Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Cloning analysis and functional validation of EfWRKY51 gene related to cold tolerance in Erianthus fulvus

WAN Hui-Lan1,**,WU Hua-Ying1,4,**,ZENG Dan1,5,QIAN Zhen-Feng1,ZHAO Chang-Zu1,LIAO Ran-Chao1,HE Li-Lian1,2,*,LI Fu-Sheng1,2,3,*   

  1. 1 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; 2 Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China; 3 The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, Yunnan, China; 4 Chongqing College of Mobile Communication, Chongqing 400800, China; 5 Lijiang City Seed Management Station, Lijiang 674100, Yunnan, China
  • Received:2025-01-26 Revised:2025-04-27 Accepted:2025-04-27 Published:2025-05-13
  • Supported by:
    This study was supported by the Major Science and Technology Project of Yunnan Province (202202AE090021) and the National Natural Science Foundation of China (31960451).

Abstract:

WRKY family transcription factors play critical roles in plant response to cold stress. Erianthus fulvus, a wild relative of sugarcane, exhibits remarkable cold tolerance; however, the function of WRKY genes in cold stress its response remains largely unknow. In this study, the EfWRKY51 gene (GenBank accession no: UVJ69259.1) was cloned from E fulvus. The full-length coding sequence (CDS) was 915 bp and encoding a 304-amino-acid protein. EfWRKY51 expression was upregulated under cold stress, and the encoded protein localized to the nucleus but exhibited no ptranscriptional activation activity. Transgenic tobacco lines overexpressing EfWRKY51 were generated via Agrobacterium-mediated leaf disc transformation. Following cold treatment, transgenic lines showed less leaf wilting compared to the wild type (WT), and displayed significantly higher seed germination rates and root lengths. Moreover, under cold stress, transgenic lines exhibited significantly higher activities of peroxidase (POD) and superoxide dismutase (SOD), as well as increased levels of proline (Pro) and soluble sugars (SS), while malondialdehyde (MDA) content was significantly reduced compared to WT. These results indicate that EfWRKY51 overexpression enhances cold tolerance in transgenic tobacco. This study provides new insights into the regulatory role of EfWRKY51 under cold stress and offers a valuable genetic resource for improving cold tolerance in sugarcane.

Key words: sugarcane, Erianthus fulvus, EfWRKY51 gene, heterologous expression, cold tolerance

[1] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248270.

Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248–270 (in Chinese with English abstract).

[2] 郑广杰, 叶昌, 徐春梅, 陈松, 褚光, 陈里鹏, 章秀福, 王丹英. 低温胁迫对水稻胚芽中葡萄糖和水分状态的影响及其与种子出苗成活间的关系. 作物学报, 2024, 50: 3055–3068.

Zheng G J, Ye C, Xu C M, Chen S, Chu G, Chen L P, Zhang X F, Wang D Y. Effect of low-temperature stress on glucose and water status in rice germ and its relationship with seedling emergence. Acta Agron Sin, 2024, 50: 3055–3068 (in Chinese with English abstract).

[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, . 低温胁迫对普通和高油酸花生种子萌发的影响. 作物学报, 2021, 47: 17681778.

Xue X M, Wu J, Wang X, Bai D M, Hu M L, Yan L Y, Chen Y N, Kang Y P, Wang Z H, Huai D X, et al. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid. Acta Agron Sin, 2021, 47: 1768–1778 (in Chinese with English abstract).

[4] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, . 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 12081220.

Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, et al. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208–1220 (in Chinese with English abstract).

[5] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018, 44: 288296.

Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H. Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sin, 2018, 44: 288–296 (in Chinese with English abstract).

[6] 韩冰, 贺超兴, 闫妍, 郭世荣, 于贤昌. AMF对低温胁迫下黄瓜幼苗生长和叶片抗氧化系统的影响. 中国农业科学, 2011, 44: 16461653.

Han B, He C X, Yan Y, Guo S R, Yu X C. Effects of arbuscular mycorrhiza fungi on seedlings growth and antioxidant systems of leaves in cucumber under low temperature stress. Sci Agric Sin, 2011, 44: 1646–1653 (in Chinese with English abstract).

[7] Thomashow M F. PLANT COLD ACCLIMATION freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599.

[8] Kaplan F, Kopka J, Sung D Y, Zhao W, Popp M, Porat R, Guy C L. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J, 2007, 50: 967–981.

[9] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803.

[10] Chinnusamy V, Zhu J H, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007, 12: 444–451.

[11] Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J, 2015, 81: 505–518.

[12] 李慧, 强胜. 植物冷驯化相关基因研究进展. 植物学通报, 2007, 42: 208217.

Li H, Qiang S. Genes involved in cold acclimation of higher plants. Chin Bull Bot, 2007, 42: 208–217 (in Chinese with English abstract).

[13] 彭婷. 不同梅花品种CBF/DREB1同源基因的克隆及功能分析. 华中农业大学博士学位论文, 湖北武汉, 2016.

Peng T. Cloning and Functional Analysis of CBF/DREB1 Homologous Genes in Mei Cultivars with Constrating Levels of Freezing Tolerance. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).

[14] 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 17.

Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1–7 (in Chinese with English abstract).

[15] Qian Z F, He L L, Li F S. Understanding cold stress response mechanisms in plants: an overview. Front Plant Sci, 2024, 15: 1443317.

[16] Wani S H, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep, 2021, 40: 1071–1085.

[17] Xue C J, Huang X Z, Zhao Y C. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep, 2024, 14: 28620.

[18] Zhang M X, Zhao R R, Huang K, Huang S Z, Wang H T, Wei Z Q, Li Z, Bian M D, Jiang W Z, Wu T, et al. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. Plant J, 2022, 112: 383–398.

[19] Wang X, Li Z Y, Shi Y T, Liu Z Y, Zhang X Y, Gong Z Z, Yang S H. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO J, 2023, 42: e112999.

[20] Zhang Y, Yu H J, Yang X Y, Li Q, Ling J, Wang H, Gu X F, Huang S W, Jiang W J. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem, 2016, 108: 478–487.

[21] 王楠楠, 董彬, 杨丽媛, 赵宏波. 梅花2PmWRKY2基因克隆及在逆境胁迫下的表达模式. 浙江农林大学学报, 2021, 38: 812819.

Wang N N, Dong B, Yang L Y, Zhao H B. Cloning and expression analysis under adversity stress of 2 PmWRKY2 in Prunus mume. J Zhejiang A&F Univ, 2021, 38: 812–819 (in Chinese with English abstract).

[22] Li W X, Pang S Y, Lu Z G, Jin B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants, 2020, 9: 1515.

[23] Tao Z, Kou Y J, Liu H B, Li X H, Xiao J H, Wang S P. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863–4874.

[24] Yang Y, Liu J, Zhou X H, Liu S Y, Zhuang Y. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant. Peer J, 2020, 8: e8777.

[25] Wang M Q, Huang Q X, Lin P, Zeng Q H, Li Y, Liu Q L, Zhang L, Pan Y Z, Jiang B B, Zhang F. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis. Front Plant Sci, 2020, 10: 1746.

[26] 路贵龙, 王朔, 连玉珍, 魏云飞. 甘蔗制糖副产物的开发与利用. 中国糖料, 2020, 42(2): 7580.

Lu G L, Wang S, Lian Y Z, Wei Y F. Development and utilization of sugarcane by-products in the sugar manufacturing process. Sugar Crops China, 2020, 42(2): 75–80 (in Chinese with English abstract).

[27] 付建涛, 孙东磊, 陈立君, 卢颖琳, 赵欢欢, 戴思行, 龚恒亮, 安玉兴. 温度和降水变化与甘蔗产量的关系分析. 热带农业科学, 2018, 38(6): 1317.

Fu J T, Sun D L, Chen L J, Lu Y L, Zhao H H, Dai S X, Gong H L, An Y X. Relationship analysis of the temperature and precipitation with the yield of sugarcane. Chin J Trop Agric, 2018, 38(6): 13–17 (in Chinese with English abstract).

[28] 李素丽, 史晓朋, 李志刚, 杨丽涛, 李杨瑞. 持续自然降温对不同甘蔗品种形态及生理指标的影响. 江苏农业科学, 2017, 45(20): 98103.

Li S L, Shi X P, Li Z G, Yang L T, Li Y R. Effects of continuous natural cooling on morphological and physiological indexes of different sugarcane varieties. Jiangsu Agric Sci, 2017, 45(20): 98–103 (in Chinese).

[29] 欧钊荣, 谭宗琨, 陈汇林, 何燕, 丁美花, 杨鑫. 影响海南省甘蔗产量的气象条件分析研究. 安徽农业科学, 2008, 36: 53665367.

Ou Z R, Tan Z K, Chen H L, He Y, Ding M H, Yang X. Analysis on the meteorological condition influencing the sugarcane yield in Hainan province. J Anhui Agric Sci, 2008, 36: 5366–5367 (in Chinese with English abstract).

[30] 何燕, 谭宗琨, 丁美花, 欧钊荣, 杨鑫. 制约广西甘蔗产量及蔗糖分含量的关键气象条件研究. 安徽农业科学, 2008, 36: 31813184.

He Y, Tan Z K, Ding M H, Ou Z R, Yang X. Study on key meteorological conditions restricting sugarcane yield and sucrose content in Guangxi. J Anhui Agric Sci, 2008, 36: 3181–3184 (in Chinese with English abstract).

[31] 李世成, 李斌, 董有波, 黄丕忠, 林文根, 周云, 唐吉昌, 段绍玲. 临沧市甘蔗霜冻害温度指标的建立与应用. 广东气象, 2023, 45(6): 9295.

Li S C, Li B, Dong Y B, Huang P Z, Lin W G, Zhou Y, Tang J C, Duan S L. Establishment and application of temperature index for sugarcane frost damage in Lincang City. Guangdong Meteor, 2023, 45(6): 92–95 (in Chinese).

[32] 谭宗琨, 何燕, 黄中艳, 欧钊荣, 丁美花. 云南气候对甘蔗产量和蔗糖分的影响分析. 甘蔗糖业, 2008, 37(1): 1521.

Tan Z K, He Y, Huang Z Y, Ou Z R, Ding M H. Analysis on the influence of Yunnan climate on sugarcane yield and sucrose content. Sugarcane Canesugar, 2008, 37(1): 15–21 (in Chinese).

[33] Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics, 2010, 284: 65–73.

[34] Wang J P, Roe B, Macmil S, Yu Q Y, Murray J E, Tang H B, Chen C X, Najar F, Wiley G, Bowers J, et al. Microcollinearity between autopolyploid sugarcane and diploid Sorghum genomes. BMC Genomics, 2010, 11: 261.

[35] 李富生, 林位夫, 何顺长. 开发利用蔗茅野生种质资源的思考. 资源开发与市场, 2004, 20(4): 266270.

Li F S, Lin W F, He S C. Suggestions on developing and utilization of Erianthus fulvus wild species. Resour Dev Mark, 2004, 20(4): 266–270 (in Chinese with English abstract).

[36] 曹哲群, 肖芙荣, 陈疏影, 何丽莲, 李富生. 7个蔗茅野生种及其后代材料苗期耐寒性鉴定. 作物杂志, 2017, (5): 4348.

Cao Z Q, Xiao F R, Chen S Y, He L L, Li F S. Identification of cold tolerance in seven wild sugarcane and three offsprings at seedling stage. Crops, 2017, (5): 43–48 (in Chinese with English abstract).

[37] Chen H W, Li X Z, Li F S, Li D Y, Dong Y, Fan Y H. Bioinformatics analysis of WRKY family genes in Erianthus fulvus ness. Genes, 2022, 13: 2102.

[38] 周会, 雷敬超, 桂意云, 贤武, 梁强, 杨荣仲, 李杨瑞. 甘蔗种质资源自然条件下耐寒性评价. 植物遗传资源学报, 2012, 13: 968973.

Zhou H, Lei J C, Gui Y Y, Xian W, Liang Q, Yang R Z, Li Y R. Evaluation on cold tolerance of sugarcane varieties under field conditions. J Plant Genet Resour, 2012, 13: 968–973 (in Chinese with English abstract).

[39] 刘敏, 顾志敏. 烟草叶片原生质体制备及其在蛋白互作研究中的应用. 安徽农业科学, 2014, 42: 50025006.

Liu M, Gu Z M. Preparation of protoplast in Nicotiana benthamiana leaf and application of protoplasts in researches on protein interaction. J Anhui Agric Sci, 2014, 42: 5002–5006 (in Chinese with English abstract).

[40] Krens F A, Molendijk L, Wullems G J, Schilperoort R A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature, 1982, 296: 72–74.

[41] 王哲, 孙敬克, 王世翔, 肖婧婧. 烟草潮霉素抗性浓度的筛选与研究. 河南城建学院学报, 2009, 18(4): 65–67.

Wang Z, Sun J K, Wang S X, Xiao J J. Hygromycin resistance to the concentration of tohacco selection and reserch. J Henan Univ Urban Constr, 2009, 18(4): 65–67 (in Chinese with English abstract).

[42] Fryer M J, Andrews J R, Oxborough K, Blowers D A, Baker N R. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol, 1998, 116: 571–580.

[43] Arisz S A, van Wijk R, Roels W, Zhu J K, Haring M A, Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant S ci, 2013, 4: 1.

[44] 张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较. 作物学报, 2011, 37: 496505.

Zhang B Q, Yang L T, Li Y R. Comparison of physiological and biochemical characteristics related to cold resistance in sugarcane under field conditions. Acta Agron Sin, 2011, 37: 496–505 (in Chinese with English abstract).

[45] 杨映, 梁华儒, 张玲玲, 吴修桥, 魏丽娟, 刘奕清. 花椒对低温胁迫的响应机制研究进展. 植物遗传资源学报, 2025, 26: 1426.

Yang Y, Liang H R, Zhang L L, Wu X Q, Wei L J, Liu Y Q. Research progress of response mechanism of Zanthoxylum bungeanum to low temperature stress. J Plant Genet Resour, 2025, 26: 1426 (in Chinese with English abstract).

[46] Ma Z M, Hu L J. WRKY transcription factor responses and tolerance to abiotic stresses in plants. Int J Mol Sci, 2024, 25: 6845.

[47] Javed T, Gao S J. WRKY transcription factors in plant defense. Trends Genet, 2023, 39: 787–801.

[48] Li Z, Hua X T, Zhong W M, Yuan Y, Wang Y J, Wang Z C, Ming R, Zhang J S. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant Cell Physiol, 2020, 61: 616–630.

[49] 徐荣, 吴清莲, 孟玉, 陈疏影, 王先宏, 何丽莲, 李富生. 割手密SsWRKY1基因的克隆与表达分析. 分子植物育种, 2020, 18: 866872.

Xu R, Wu Q L, Meng Y, Chen S Y, Wang X H, He L L, Li F S. Cloning and expression analysis of the SsWRKY1 gene in Saccharum spontaneum. Mol Plant Breed, 2020, 18: 866–872 (in Chinese with English abstract).

[50] Shen Q Q, Wang T J, Wang J G, He L L, Zhao T T, Zhao X T, Xie L Y, Qian Z F, Wang X H, Liu L F, et al. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. Plant Physiol Biochem, 2023, 199: 107706.

[51] Wang D J, Wang L, Su W H, Ren Y J, You C H, Zhang C, Que Y X, Su Y C. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.

[52] Javed T, Zhou J R, Li J, Hu Z T, Wang Q N, Gao S J. Identification and expression profiling of WRKY family genes in sugarcane in response to bacterial pathogen infection and nitrogen implantation dosage. Front Plant Sci, 2022, 13: 917953.

[53] Wang L, Liu F, Zhang X, Wang W J, Sun T T, Chen Y F, Dai M J, Yu S X, Xu L P, Su Y C, et al. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.

[54] Villano C, Esposito S, D’Amelia V, Garramone R, Alioto D, Zoina A, Aversano R, Carputo D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep, 2020, 10: 7196.

[55] Wang Y X, Zhang M H, Wu C Z, Chen C, Meng L, Zhang G Q, Zhuang K Y, Shi Q H. SlWRKY51 regulates proline content to enhance chilling tolerance in tomato. Plant Cell Environ, 2024, 47: 5104–5114.

[56] Kim C Y, Vo K T X, Nguyen C D, Jeong D H, Lee S K, Kumar M, Kim S R, Park S H, Kim J K, Jeon J S. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep, 2016, 10: 13–23.

[57] Wang F, Hou X L, Tang J, Wang Z, Wang S M, Jiang F L, Li Y. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep, 2012, 39: 4553–4564.

[58] 代明球, 伍玺王文彬玉米抗旱基因ZmWRKY51及其应用. 中国专利: ZL 202410453330.X, 2024-04-16.

Dai M Q, Wu X, Wang W B. Drought Resistant Gene ZmWRKY51 in Maize and Its Application. Chinese Patent: ZL 202410453330.X, 2024-04-16 (in Chinese).

[59] Wang H L, Cheng X, Yin D M, Chen D L, Luo C, Liu H, Huang C L. Advances in the research on plant WRKY transcription factors responsive to external stresses. Curr Issues Mol Biol, 2023, 45: 2861–2880.

[60] Wang S Y, Wu G Q, Wei M. Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses. Chin J Biotechnol, 2024, 40: 35–52.

[61] 陈婷婷, 杨青川, 丁旺, 康俊梅, 张铁军, 张新全. 紫花苜蓿WRKY转录因子基因的克隆与亚细胞定位. 草业学报, 2012, 21(4): 159167.

Chen T T, Yang Q C, Ding W, Kang J M, Zhang T J, Zhang X Q. Cloning and subcellular localization of a WRKY transcription factor gene of Medicago sativa. Acta Pratac Sin, 2012, 21(4): 159–167 (in Chinese with English abstract).

[62] Xu J, Liu S D, Hong J C, Lin R, Xia X J, Yu J Q, Zhou Y H. SlBTB19 interacts with SlWRKY2 to suppress cold tolerance in tomato via the CBF pathway. Plant J, 2024, 120: 1112–1124.

[63] Chen X S, Gao Z Y, Yu Z H, Ding Q, Qian X J, Zhang C Y, Zhu C Y, Wang Y L, Zhang C W, Li Y, et al. BcWRKY53 promotes chlorophyll biosynthesis and cold tolerance of non-heading Chinese cabbage under cold stress. Plant Physiol Biochem, 2025, 219: 109398.

[64] Liu W, Liang X Q, Cai W J, Wang H, Liu X, Cheng L F, Song P H, Luo G J, Han D G. Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. Int J Mol Sci, 2022, 23: 13418.

[65] Pak S H, Ri T S, Ho T S, Kim G S, Kim H I, Ho U H. Stress responsive ZmWRKY53 gene increases cold tolerance in rice. Transgenic Res, 2024, 33: 219–227.

[1] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[2] KUANG Bo-Wen, WEI Ni, LIU Jin-Dian, CHEN Mei-Yan, MAO Xing-Jie, DUAN Wei-Xing, YANG Xi-Ping. Development of SSR markers and database based on genomes of sugarcane and its relatives [J]. Acta Agronomica Sinica, 2025, 51(1): 103-116.
[3] LI Xu-Juan, LI Chun-Jia, TIAN Chun-Yan, KONG Chun-Yan, XU Chao-Hua, LIU Xin-Long. Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(8): 2131-2142.
[4] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng. Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO [J]. Acta Agronomica Sinica, 2024, 50(7): 1855-1866.
[5] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[6] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.
[7] WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125.
[8] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[9] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[10] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[11] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[12] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[13] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[14] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[15] CAO Hui-Min, YANG Xian-Li, WANG Li-Zhi, LI Ping-Ping, ZHAI Lai-Yuan, JIANG Shu-Kun, ZHENG Tian-Qing, QIU Xian-Jin, XU Jian-Long. QTL identification and favorable allele mining of cold tolerance at seedling stage by reciprocal introgression and recombinant inbred line populations in rice [J]. Acta Agronomica Sinica, 2023, 49(10): 2633-2642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!