Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Analysis of genotype × environment interaction and stability of yield-related traits in adzuki bean (Vigna angularis)

HU Liang-Liang1,**,ZHOU Hong-Mei2,**,WANG Xiao-Lei3,**,WANG Su-Hua1,LI Cai-Ju2,WEI Yun-Shan3,WANG Li-Xia1,CHENG Xu-Zhen1,*,CHEN Hong-Lin1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; 2 Baoding Academy of Agricultural Sciences, Baoding 071051, Hebei, China; 3 Chifeng Institute of Agro-Pastoral Sciences, Chifeng 024031, Inner Mongolia, China
  • Received:2025-04-14 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-18
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-08-04G) and the Innovation Program of the Chinese Academy of Agricultural Sciences (01-ICS-07).

Abstract:

To evaluate the yield potential, adaptability, and stability of major cultivated adzuki bean varieties in Chinaand to provide guidance for regional application and breeding strategies—this study conducted multi-location trials involving 15 adzuki bean genotypes across eight representative ecological testing sites in major production areas during 2022 and 2023. A combination of joint variance analysis, correlation analysis, the additive main effects and multiplicative interaction (AMMI) model, and genotype-by-environment interaction (GGE) biplot analysis was used to comprehensively assess yield and related agronomic traits. The results from the combined ANOVA showed that environmental factors were the primary drivers of variation in all traits except 100-seed weight, which was mainly influenced by genotype. The genotype × environment interaction had a highly significant effect on yield and the number of main stem branches. Correlation analysis indicated that yield was strongly positively correlated with the number of pods per plant, identifying it as a key determinant of yield. AMMI and GGE analyses revealed significant G×E interactions, clarifying the specific adaptation zones and stability differences among genotypes. Comprehensive evaluation identified genotype G5 as having both high yield potential and strong stability, approaching the characteristics of an ideal genotype. Environmental assessment indicated that the Yulin (E5) testing site had strong representativeness and discrimination ability, making it a nearly ideal testing environment. Overall, the study confirms that environmental effects play a dominant role in shaping yield-related traits in adzuki bean, and that genotype × environment interaction is a critical consideration in variety selection and promotion. The number of pods per plant is proposed as a key target trait for high-yield breedingThis research provides theoretical support for the rational deployment, promotion, and development of high-yield and stable adzuki bean breeding strategies in China.

Key words: adzuki bean (Vigna angularis), yield-related traits, genotype × environment interaction (G×E), stability, GGE biplot

[1] Wang Y, Yao X M, Shen H F, Zhao R, Li Z B, Shen X T, Wang F, Chen K X, Zhou Y, Li B, Zheng X Z, Lu S W. Nutritional composition, efficacy, and processing of Vigna angularis (adzuki bean) for the human diet: An overview. Molecules, 2022, 27: 6079.

[2] Mukai Y, Sato S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J Nutr Biochem, 2011, 22: 16–21. 

[3] Kitano-Okada T, Ito A, Koide A, Nakamura Y, Han K H, Shimada K, Sasaki K, Ohba K, Sibayama S, Fukushima M. Anti-obesity role of adzuki bean extract containing polyphenols: in vivo and in vitro effects. J Sci Food Agric, 2012, 92: 2644–2651. 

[4] Liu L, Bestel S, Shi J M, Song Y H, Chen X C. Paleolithic human exploitation of plant foods during the last glacial maximum in North China. Proc Natl Acad Sci USA, 2013, 110: 5380–5385.

[5] 程须珍, 田静, 王丽侠, 陈红霖, 王素华. 中国食用豆类品种志第二辑. 北京: 科学出版社, 2023. p 138.

Cheng X Z, Tian J, Wang L X, Chen H L, Wang S H. Annals of Chinese Legume Varieties, Volume II. Beijing: Science Press, 2023. p 138 (in Chinese).

[6] 韩昕儒, 宋莉莉. 我国绿豆、小豆生产特征及产业发展趋势. 中国农业科技导报, 2019, 21(8): 1–10.

Han X R, Song L L. Study on production and consumption characteristics and industrial development trends of mung bean and adzuki bean in China. J Agric Sci Technol, 2019, 21(8): 1–10 (in Chinese with English abstract).

[7] Tomooka N, Vaughan D A, Moss H, Maxted N. The Asian Vigna: Genus Vigna subgenus Ceratotropis Genetic Resources. Boston: Kluwa Academic Press, 2003. p 1.

[8] Maranna S, Nataraj V, Kumawat G, Mehetre S P, Reddy R, Jaybhay S, Suresh P G, Rathod S, Agrawal N, Rajesh V, Kumar S, Rajput L S, Talukdar A, Gireesh C, Chandra S, Ratnaparkhe M B, Ramteke R, Satpute G K, Gupta S, Singh K H. Understanding of G × E interactions of yield attributes in soybean MAGIC population and characterization for charcoal rot resistance. Agron J, 2024, 116: 1290–1301. 

[9] Das S, Majhi P K, Sahoo K C, Tudu S, Ray M, Mishra N. Genotype-by-environment (G × E) interaction and grain yield stability analysis for selected genotypes of desi chickpea (Cicer arietinum L.) by using AMMI model. Legume Res Int J, 2024, 47: 1958–1963.

[10] Sumalini K, Pradeep T, Sravani D. G × E interaction studies in relation to heterosis and stability of grain yield in maize (Zea mays L.). Indian J Genet Plant Breed, 2020, 80: 250–260.

[11] 吴为人. 多环境试验中质量数量性状的遗传分析. 作物学报, 1999, 25: 723726.

Wu W R. Genetic analysis of qualitative-quantitative trait in multiple-environment experiments. Acta Agron Sin1999, 25: 723726 (in Chinese with English abstract).

[12] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价. 作物学报, 2023, 49: 1231–1248.
Yue H W, Han X, Wei J W, Zheng S H, Xie J L, Chen S P, Peng H C, Bu J Z. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis. Acta Agron Sin, 2023, 49: 1231–1248 (in Chinese with English abstract).

[13董伟欣. 北方夏播区19个小豆品种的特征特性. 农技服务, 2020, 37(5): 91–94.

Dong W X. The characteristics of 19 adzuki bean varieties in the summer sowing area of northern China. Agric Technol Serv, 2020, 37(5): 91–94 (in Chinese). 

[14] 范保杰, 刘长友, 王彦, 张志肖, 苏秋竹, 王珅, 刘阳, 田静. 冀红17号新品种选育及高产高效配套栽培技术. 现代农村科技, 2021, (7): 14–15.
Fan B J, Liu C Y, Wang Y, Zhang Z X, Su Q Z, Wang S, Liu Y, Tian J. Breeding of a new variety named Jihong 17 and Its supporting cultivation techniques for high yield and high efficiency. Xian Dai Nong Cun Ke Ji, 2021, (7): 14–15 (in Chinese).

[15王洪皓, 沈宝宇, 赵秋. 特大粒红小豆辽红小豆8号特征特性及栽培技术. 现代农业科技, 2013, 17: 56–58.
Wang H H, Shen B Y, Zhao Q. Characteristics and cultivation techniques of Liaohongxiaodou No. 8, an extra-large grain adzuki bean variety. Mod Agric Sci Technol, 2013, 17: 56–58 (in Chinese).

[16] 孟宪欣, 王强, 魏淑红, 张威. 小豆新品种龙小豆4号选育及栽培要点. 黑龙江农业科学, 2016, (5): 160.
Meng X X, Wang Q, Wei S H, Zhang W. Breeding of a new adzuki bean variety LongxiaodouNo. 4 and its key cultivation points. Heilongjiang Agric Sci, 2016, (5): 160 (in Chinese).

[17] Olivoto T, Lúcio A D C, Silva J A G, Marchioro V S, Souza V Q, Jost E. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron J, 2019, 111: 2949–2960. 

[18] 胡亮亮, 陈燕华, 王成, 陈天晓, 曹榕, 宋倩楠, 王素华, 罗高玲, 申惠波, 王丽侠, 程须珍, 陈红霖. 小豆种质资源产量性状的多环境评价与优异种质筛选. 植物遗传资源学报, 2025, 26: 1342–1354.

Hu L L, Chen Y H, Wang C, Chen T X, Cao R, Song Q N, Wang S H, Luo G L, Shen H B, Wang L X, Cheng X Z, Chen H L. Multi-environment evaluation and elite germplasm selection for yield traits in adzuki bean (Vigna angularis). J Plant Genet Resour, 2025, 26: 1342–1354 (in Chinese with English abstract).

[19] Piepho H P, Blancon J. Extending Finlay–Wilkinson regression with environmental covariates. Plant Breed, 2023, 142: 621–631.

[20] Anputhas M, Samita S, Abeysiriwardena D S. Stability and adaptability analysis of rice cultivars using environment-centered yield in two-way ANOVA model. Commun Biol Crop Sci, 2011, 6: 80–86.

[21] Gauch H G Jr. A simple protocol for AMMI analysis of yield trials. Crop Sci, 2013, 53: 1860–1869.

[22] 张泽, 鲁成, 向仲怀. 基于AMMI模型的品种稳定性分析. 作物学报, 1998, 24: 304309.

Zhang Z, Lu C, Xiang Z H. Analysis of variety stability based on AMMI model. Acta Agron Sin1998, 24: 304309 (in Chinese with English abstract).

[23] Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488–1500.

[24] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805–1819.
Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805–1819 (in Chinese with English abstract).

[25] 王磊, 程本义, 鄂志国, 杨仕华. 基于GGE双标图的水稻区试品种丰产性、稳产性和适应性评价. 中国水稻科学, 2015, 29: 408–416.
Wang L, Cheng B Y, E Z G, Yang S H. Use of GGE biplots in the yielding ability, stability and adaptation evaluation for the varieties in the rice regional trials. Chin J Rice Sci, 2015, 29: 408–416 (in Chinese with English abstract).

[26] 鲁月, 张子惠, 陆洲, 王淑婷, 郝德荣, 李鹏程, 徐扬, 徐辰武, 陆虎华, 杨泽峰. 基于AMMI模型和GGE双标图对江苏省甜玉米区域试验的分析. 分子植物育种, 2022, 20: 6939–6946.
Lu Y, Zhang Z H, Lu Z, Wang S T, Hao D R, Li P C, Xu Y, Xu C W, Lu H H, Yang Z F. Analysis of the regional trial for sweet maize in Jiangsu province based on the AMMI model and GGE biplot. Mol Plant Breed, 2022, 20: 6939–6946 (in Chinese with English abstract).

[27] 张志芬, 付晓峰, 刘俊青, 杨海顺. GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. 作物学报, 2010, 36: 1377–1385.
Zhang Z F, Fu X F, Liu J Q, Yang H S. Yield stability and testing-site representativeness in national regional trials for oat lines based on GGE-biplot analysis. Acta Agron Sin, 2010, 36: 1377–1385 (in Chinese with English abstract).

[28程须珍, 王素华, 王丽侠. 小豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 17–21.
Cheng X Z, Wang S H, Wang L X. Descriptions and Data Standard for Adzuki Bean (Vigna angularis). Beijing: China Agriculture Press, 2006. pp 17–21 (in Chinese).

[29] Wei T Y, Simko V, Levy M, Xie Y H, Jin Y, Zemla J. Package ‘corrplot’. Statistician, 2017, 56: e24.

[30F de Mendiburu. agricolae: Statistical procedures for agricultural research. R package version 1.3-1, https://CRAN.R-project.org/package=agricolae (accessed January 30, 2020). 

[31] Yan W K, Tinker N A. Biplot analysis of multi-environment trial data: Principles and applications. Can J Plant Sci, 2006, 86: 623–645.

[32朱军. 包括基因型×环境互作效应的种子遗传模型及其分析方法. 遗传学报, 1996, 23(1): 56–68.
Zhu J. Seed genetic model including genotype × environment interaction effect and its analysis method. J Genet Genomics, 1996, 23(1): 56–68 (in Chinese).

[33陈亚光, 杨雨阳, 昝凯, 王凤菊. 黄淮海11个夏大豆品种()产量稳定性和适应性分析. 大豆科学, 2024, 43(2): 159–166.
Chen Y G, Yang Y Y, Zan K, Wang F J. Stability and adaptability analysis on yield of eleven summer soybean varieties (lines) in Huang-Huai-Hai region. Soybean Sci, 2024, 43(2): 159–166 (in Chinese with English abstract).

[34] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析. 作物学报, 2024, 50: 149–160.
Shao Y, Guo Y P, Zhou B Y, Zhang F, Zhang X M, Wang Y P. Analysis of genotype × environment interaction and stability of yield components in faba bean lines. Acta Agron Sin, 2024, 50: 149–160 (in Chinese with English abstract).

[35金文林, 白璐, 文自翔, 濮绍京, 赵波. 小豆百粒重性状遗传体系分析. 作物学报, 2006, 32: 1410–1412.

Jin W L, Bai L, Wen Z X, Pu S J, Zhao B. Analysis on genetic system of 100-seed weight in adzuki bean. Acta Agron Sin, 2006, 32: 1410–1412 (in Chinese with English abstract).

[36] Hu L L, Luo G L, Zhu X, Wang S H, Wang L X, Cheng X Z, Chen H L. Genetic diversity and environmental influence on yield and yield-related traits of adzuki bean (Vigna angularis L.). Plants, 2022, 11: 1132.

[37白鹏, 程须珍, 王丽侠, 王素华, 陈红霖. 小豆种质资源农艺性状综合鉴定与评价. 植物遗传资源学报, 2014, 15: 1209–1215.
Bai P, Cheng X Z, Wang L X, Wang S H, Chen H L. Evaluation in agronomic traits of adzuki bean accessions. J Plant Genet Resour, 2014, 15: 1209–1215 (in Chinese with English abstract).

[38王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价. 作物学报, 2018, 44: 357–368.
Wang L F, Wu J, Wang Z L, Chen J B, Yu L, Wang Q, Wang S M. Adaptability and phenotypic variations of agronomic traits in common bean germplasm resources in different environments. Acta Agron Sin, 2018, 44: 357–368 (in Chinese with English abstract).

[39] Fan F F, Liu M M, Li N N, Guo Y, Yuan H R, Si F F, Cheng M X, Chen G L, Cai M, Li N W, Zhang Y X, Yu Y, Pi L M, Yang H C, Yang F, Wang K, Li S Q. Gain-of-function allele of HPY1 coordinates source and sink to increase grain yield in rice. Sci Bull, 2023, 68: 2155–2159.

[1] ZOU Yi-Miao, YU Xiang-Ping, MIAO Yu-Cong, CAI Qian, DU Gui-Juan, ZHAO Feng-Yan, ZHANG Shi-Yu, LI Shuang-Yi, BAI Wei. Characteristics of soil organic carbon fraction accumulation and its stability in dry-crop farmland in northeast China after plough layer construction [J]. Acta Agronomica Sinica, 2025, 51(5): 1277-1285.
[2] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[3] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[4] WANG Yun-Jie, FAN Zhi-Long, ZHANG Diao-Liang, MAO Shou-Fa, HU Fa-Long, YIN Wen, CHAI Qiang. Response of the yield sustainability of maize with different irrigated quota to intercropped green manure [J]. Acta Agronomica Sinica, 2024, 50(10): 2562-2574.
[5] SHAO Yang, GUO Yan-Ping, ZHOU Bing-Yue, ZHANG Feng, ZHANG Xin-Ming, WANG Yu-Ping. Analysis of genotype × environment interaction and stability of yield components in faba bean lines [J]. Acta Agronomica Sinica, 2024, 50(1): 149-160.
[6] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[7] JIANG Xiao, XU Jing, PAN Li-Juan, CHEN Na, WANG Tong, JIANG Xiao-Dong, YIN Xiang-Zhen, YANG Zhen, YU Shan-Lin, CHI Xiao-Yuan. Peanut yield-related traits and meteorological factors correlation analysis in multiple environments [J]. Acta Agronomica Sinica, 2023, 49(11): 3110-3121.
[8] YAN Weikai. A critical review on the principles and procedures for cultivar development and evaluation [J]. Acta Agronomica Sinica, 2022, 48(9): 2137-2154.
[9] XU Yunbi, WANG Bing-Bing, ZAHNG Jian, ZHANG Jia-Nan, LI Jian-Sheng. Enhancement of plant variety protection and regulation using molecular marker technology [J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870.
[10] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[11] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[12] Xi-Miao YE,Xin CHENG,Cong-Cong AN,Jian-Long YUAN,Bin YU,Guo-Hong WEN,Gao-Feng LI,Li-Xiang CHENG,Yu-Ping WANG,Feng ZHANG. Genotype × environment interaction and stability of yield components for potato lines [J]. Acta Agronomica Sinica, 2020, 46(3): 354-364.
[13] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[14] Jian-Bin GUO,Bei WU,Wei-Gang CHEN,Li HUANG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG. Stability of major fatty acids contents of peanut varieties grown in different ecological regions [J]. Acta Agronomica Sinica, 2019, 45(5): 676-682.
[15] Lhundrupnamgyal,Hui-Hui LI,Gang-Gang GUO, Chemiwangmo,Li-Yun GAO,Ya-Wei TANG, Nyematashi, Dawadondrup, Dolkar. Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1796-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!