LI Wan1,*,CHANG Zi-Rui1,LU Yao2,SHEN Ri-Min2,ZHAO Yong-Ping1,*,BAI Xiao-Dong2,*
[1] Uçarlı C. Genome-wide identification and in silico gene expression analysis of the related to ABI3/VP1 (RAV) transcription factor family in barley (Hordeum vulgare L.). Biocell, 2021, 45: 1673–1685. [2] Zhou M L, Tang Y X, Wu Y M. Genome-wide analysis of AP2/ERF transcription factor family in Zea mays. Curr Bioinform, 2012, 7: 324–332. [3] Matías-Hernández L, Aguilar-Jaramillo A E, Marín-González E, Suárez-López P, Pelaz S. RAV genes: regulation of floral induction and beyond. Ann Bot, 2014, 114: 1459–1470. [4] Hu Y X, Wang Y X, Liu X F, Li J Y. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14: 8–15. [5] Fu M J, Kang H K, Son S H, Kim S K, Nam K H. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant Cell Physiol, 2014, 55: 1892–1904. [6] Woo H R, Kim J H, Kim J, Kim J, Lee U, Song I J, Kim J H, Lee H Y, Nam H G, Lim P O. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot, 2010, 61: 3947–3957. [7] Lee S C, Choi D S, Hwang I S, Hwang B K. The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol, 2010, 73: 409–424. [8] Zhao L, Luo Q L, Yang C L, Han Y P, Li W B. A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta, 2008, 227: 1389–1399. [9] Lu Q Y, Zhao L, Li D M, Hao D Q, Zhan Y, Li W B. A GmRAV ortholog is involved in photoperiod and sucrose control of flowering time in soybean. PLoS One, 2014, 9: e89145. [10] Li C W, Su R C, Cheng C P, Sanjaya, You S J, Hsieh T H, Chao T C, Chan M T. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol, 2011, 156: 213–227. [11] Li W, Chen Y, Ye M H, Lu H B, Wang D D, Chen Q. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum. BMC Evol Biol, 2020, 20: 142. [12] Singh V K, Jain M, Garg R. Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes. Front Plant Sci, 2014, 5: 789. [13] Guo B J, Wei Y F, Xu R B, Lin S, Luan H Y, Lyu C, Zhang X Z, Song X Y, Xu R G. Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS One, 2016, 11: e0161322. [14] Charfeddine M, Saïdi M N, Charfeddine S, Hammami A, Gargouri Bouzid R. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.). Mol Biotechnol, 2015, 57: 348–358. [15] Zhao S P, Xu Z S, Zheng W J, Zhao W, Wang Y X, Yu T F, Chen M, Zhou Y B, Min D H, Ma Y Z, et al. Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV-03 involvement in salt and drought stresses and exogenous ABA treatment. Front Plant Sci, 2017, 8: 905. [16] Jin J P, Zhang H, Kong L, Gao G, Luo J C. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res, 2014, 42: D1182–D1187. [17] Bhattacharyya S, Pattanaik S, Maiti I B. Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PClSV) promoter-leader and the antisense orientation of PClSV orf vii (p7R). Planta, 2003, 218: 115–124. [18] Zhang C, Kong N N, Cao M X, Wang D D, Chen Y, Chen Q. Evolutionary significance of amino acid permease transporters in 17 plants from Chlorophyta to Angiospermae. BMC Genomics, 2020, 21: 391. [19] Dossa K, Wei X, Li D H, Fonceka D, Zhang Y X, Wang L H, Yu J Y, Liao B S, Diouf D, Cissé N, et al. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol, 2016, 16: 171. [20] Rogozin I B, Carmel L, Csuros M, Koonin E V. Origin and evolution of spliceosomal introns. Biol Direct, 2012, 7: 11. [21] Roy S W, Penny D. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol, 2007, 24: 171–181. [22] Kang J M, Ju H L, Sohn W M, Na B K. Characterization of the biochemical properties of two methionine aminopeptidases of Cryptosporidium parvum. Parasitol Int, 2012, 61: 707–710. [23] Rice D W, Alverson A J, Richardson A O, Young G J, Sanchez-Puerta M V, Munzinger J, Barry K, Boore J L, Zhang Y, DePamphilis C W, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science, 2013, 342: 1468–1473. [24] Mittal A, Jiang Y W, Ritchie G L, Burke J J, Rock C D. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. Plant Sci, 2015, 241: 78–95. [25] Sohn K H, Lee S C, Jung H W, Hong J K, Hwang B K. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol, 2006, 61: 897–915. [26] Zhuang J, Sun C C, Zhou X R, Xiong A S, Zhang J. Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15. Mol Biol Rep, 2011, 38: 3921–3928. [27] Hurst L D. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet, 2002, 18: 486. [28] Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 2008, 2008: 619832. [29] Wei Y X, Chang Y L, Zeng H Q, Liu G Y, He C Z, Shi H T. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J Pineal Res, 2018, 64: e12454.
[30] 支添添, 周舟, 陈纪鹏, 韩成云. 甘蓝型油菜酪氨酸代谢关键基因FAH的克隆、功能鉴定和表达分析. 生物技术通报, 2023, 39(10): 115–127. [31] Titarenko E, Rojo E, León J, Sánchez-Serrano J J. Jasmonic acid-dependent and-independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol, 1997, 115: 817–826. [32] Li B B, Zhao Y J, Wang S, Zhang X H, Wang Y W, Shen Y, Yuan Z H. Genome-wide identification, gene cloning, subcellular location and expression analysis of SPL gene family in P. granatum L. BMC Plant Biol, 2021, 21: 400.
[33] 解盛, 李国旗, 宋立肖, 谢博勋, 王雅芳, 刘星. 罗布麻CesA基因家族的生物信息学分析. 广西植物, 2021, 41: 522–534. [34] Zhou L J, Wang Y X, Wang Y G, Song A P, Jiang J F, Chen S M, Ding B Q, Guan Z Y, Chen F D. Transcription factor CmbHLH16 regulates petal anthocyanin homeostasis under different lights in Chrysanthemum. Plant Physiol, 2022, 190: 1134–1152. [35] Zhu Y S, Wang Y C, Jiang H Y, Liu W J, Zhang S H, Hou X K, Zhang S S, Wang N, Zhang R, Zhang Z Y, et al. Transcriptome analysis reveals that PbMYB61 and PbMYB308 are involved in the regulation of lignin biosynthesis in pear fruit stone cells. Plant J, 2023, 116: 217–233. [36] Feng C Z, Chen Y, Wang C, Kong Y H, Wu W H, Chen Y F. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J, 2014, 80: 654–668. [37] Lee H Y, Byeon Y, Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res, 2014, 57: 262–268. |
[1] | FENG Wu-Jian, XIAN Xiao-Qing, ZHANG Xin-Bo, CAO Dan, QIANG Cheng-Kui. Rapid transcriptome and AlphaFold-based identification of classical effector proteins of Magnaporthe oryzae and receptors in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1480-1488. |
[2] | LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214. |
[3] | ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649. |
[4] | YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236. |
[5] | SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434. |
[6] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[7] | WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813. |
[8] | JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792. |
[9] | LI Wan, LI Cheng, CHENG Min, WU Fang. Phosphorus transporter StPHO1.2 improving heat tolerance in potato [J]. Acta Agronomica Sinica, 2024, 50(2): 394-402. |
[10] | WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182. |
[11] | MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725. |
[12] | JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425. |
[13] | QI Yan-Ni, LI Wen-Juan, ZHAO Li-Rong, LI Wen, WANG Li-Min, XIE Ya-Ping, ZHAO Wei, DANG Zhao, ZHANG Jian-Ping. Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax [J]. Acta Agronomica Sinica, 2023, 49(3): 687-702. |
[14] | PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425. |
[15] | SUN Lan-Lan, MA Rong-Hui, XUE Fei, YANG Mu-Han, XU Hong-Le, SU Wang-Cang, LU Chuan-Tao, WU Ren-Hai. Cloning and the relative expression pattern of GST31 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(10): 2717-2726. |
|