Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2717-2726.doi: 10.3724/SP.J.1006.2023.23080
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SUN Lan-Lan(), MA Rong-Hui, XUE Fei, YANG Mu-Han, XU Hong-Le, SU Wang-Cang, LU Chuan-Tao, WU Ren-Hai()
[1] |
Dixon D P, Cummins L, Cole D J, Edwards R. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol, 1998, 1: 258-266.
doi: 10.1016/s1369-5266(98)80114-3 pmid: 10066594 |
[2] |
Nutricati E, Miceli A, Blando F, De Bellis L. Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Rep, 2006, 25: 997-1005.
doi: 10.1007/s00299-006-0146-1 pmid: 16538523 |
[3] |
Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277: 30859-30869.
doi: 10.1074/jbc.M202919200 |
[4] | Edeards R, Dixon D P. Gluthione Transferases and Gamma- glutamyl Transpeptidases. USA: Academic Press, 2005. pp 169-186. |
[5] |
Liu Y J, Han X M, Ren L L, Yang H L, Zeng Q Y. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol, 2013, 161: 773-786.
doi: 10.1104/pp.112.205815 pmid: 23188805 |
[6] | Lallement P A, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol, 2014, 5: 192. |
[7] | Cottingham C K, Hatzios K K, Meredith S. Influence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid. Zeitchrift Naturforsch C J Biosci, 1998, 53: 973-979. |
[8] |
Shimabukuro R H, Frear D S, Swanson H R, Walsh W C. Glutathione conjugation. Plant Physiol, 1971, 47: 10-14.
pmid: 5543779 |
[9] | 郭玉莲, 陶波, 郑铁军, 李宝英, 翟喜海, 潘亚清. 植物谷胱甘肽S-转移酶(GSTs)及除草剂解毒剂的诱导作用. 东北农业大学学报, 2008, 39(7): 136-139. |
Guo Y L, Tao B, Zheng T J, Li B Y, Zhai X H, Pan Y Q. Inducement action of plant GSTs and herbicides antidotes. J Northeast Agric Univ, 2008, 39(7): 136-139 (in Chinese with English abstract). | |
[10] | Timmerman K P. Molecular characterization of corn glutathione S-transferase isozymes involved in herbicide detoxication. Physiol Plant, 1989, 77: 465-471. |
[11] |
Jepson I, Lay V J, Holt D C, Bright S W, Greenland A J. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol Biol, 1994, 26: 1855-1866.
pmid: 7858222 |
[12] |
Mueller L A, Goodman C D, Silady R A, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000, 123: 1561-1570.
doi: 10.1104/pp.123.4.1561 pmid: 10938372 |
[13] |
Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436 |
[14] |
Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621-3634.
doi: 10.1093/jxb/ern217 |
[15] |
Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831-843.
doi: 10.1007/s00299-015-1924-4 |
[16] |
Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, Zhang Z Y, Wu S J, Chen X S. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40.
doi: 10.1038/s41438-019-0118-6 |
[17] |
Chan C, Lam H M. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Physiol, 2014, 55: 570-579.
doi: 10.1093/pcp/pct201 pmid: 24399237 |
[18] | 彭学岗. 玉米田革命性杂草解决方案. 湖北植保. 2014, (3): 63-64. |
Peng X G. Revolutionary weed solutions for corn fields. Hubei Plant Prot, 2014, (3): 63-64. (in Chinese) | |
[19] | 浦军, 黄吉美, 扬眉. 不同除草剂对玉米田的防效及产量影响. 特种经济动植物, 2022, 25(10): 36-37. |
Pu J, Huang J M, Yang M. Effectiveness of different herbicides on corn fields and yield. Special Econom Anim Plant, 2022, 25(10): 36-37. (in Chinese) | |
[20] |
Liu X M, Bi B, Xu X, Li B H, Tian S G, Wang J P, Zhang H, Wang G Q, Han Y J, McElroy J S. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Theor Appl Genet, 2019, 132: 1351-1361.
doi: 10.1007/s00122-019-03282-8 |
[21] |
Williams B J, Harvey R G. Effect of nicosulfuron timing on wild-proso millet (Panicum miliaceum) control in sweet corn (Zea mays). Weed Technol, 2000, 14: 377-382.
doi: 10.1614/0890-037X(2000)014[0377:EONTOW]2.0.CO;2 |
[22] |
Ferguson J E, Rhodes A M, Dickinson D B. The genetic of sugary enhancer (se), an independent modifier of sweet corn (su). J Hered, 1978, 69: 377-380.
doi: 10.1093/oxfordjournals.jhered.a108976 |
[23] |
Davies J, Caseley J C. Herbicide safeners: a review. Pest Sci, 1999, 55: 1043-1058.
doi: 10.1002/(SICI)1096-9063(199911)55:11<>1.0.CO;2-4 |
[24] |
Hatzios K K, Burgos N. Metabolism-based herbicide resistance: regulationby safeners. Weed Sci, 2004, 52: 454-467.
doi: 10.1614/P2002-168C |
[25] |
Abu-Qare A W, Duncan H J. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action. Chemosphere, 2002, 48: 965-974.
pmid: 12222792 |
[26] | Sun L L, Wu R H, Su W C, Gao Z G, Lu C T. Herbicide safeners increase waxy maize tolerance to nicosulfuron and affect weed control. J Agric Sci Technol, 2016, 6: 386-393. |
[27] |
Sun L L, Wu R H, Su W C, Gao Z G, Lu C T. Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids. PLoS One, 2017, 12: e0173502.
doi: 10.1371/journal.pone.0173502 |
[28] |
Sun L L, Xu H L, Su W C, Xue F, An S H, Lu C T, Wu R H. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. Plant Physiol Biochem, 2018, 129: 101-108.
doi: 10.1016/j.plaphy.2018.05.025 |
[29] | Schulte W, Köcher H. Tembotrione and combination partner isoxadifen-ethyl-mode of herbicidal action. Bayer Crop Sci J, 2009, 62: 35-52. |
[30] |
Ma R H, Tian N, Wang J S, Fan M L, Wang B, Qu P Y, Xu S Y, Xu Y B, Cheng C Z, Lyu P T. Genome-wide identification and characterization of banana Ca2+-ATPase genes and expression analysis under different concentrations of Ca2+ treatments. Int J Mol Sci, 2022, 23: 11914.
doi: 10.3390/ijms231911914 |
[31] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[32] | 姜婷, 苏乔, 安利佳. 多重胁迫下玉米实时定量PCR内参基因的筛选与验证. 植物生理学报, 2015, 51: 1457-1464. |
Jiang T, Su Q, An L J. Screening and validation of reference genes of qPCR in maize under multiple stresses. Plant Physiol J, 2015, 51: 1457-1464. (in Chinese with English abstract) | |
[33] |
Riechers D E, Kreuz K, Zhang Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol, 2010, 153: 3-13.
doi: 10.1104/pp.110.153601 pmid: 20237021 |
[34] |
Delye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci, 2013, 69: 176-187.
doi: 10.1002/ps.3318 pmid: 22614948 |
[35] |
Jugulam M, Shyam C. Non-target-site resistance to herbicides: recent developments. Plants, 2019, 8: 417.
doi: 10.3390/plants8100417 |
[36] |
Dixon D P, Edwards R. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem, 2009, 284: 21249-21256.
doi: 10.1074/jbc.M109.020107 pmid: 19520850 |
[37] |
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson C G, Weber A P, Olsen L J, Hu J P. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol, 2009, 150: 125-143.
doi: 10.1104/pp.109.137703 pmid: 19329564 |
[38] |
Basantani, M K, Srivastava A. Plant glutathione transferases: a decade falls short. Can J Bot, 2007, 85: 443-456.
doi: 10.1139/B07-033 |
[39] |
Rossini L, Frova C, Enrico Pè M, Mizzi L, Gorla M S. Alachlor regulation of maize glutathione S-transferase genes. Pest Biochem Physiol, 1998, 60: 205-211.
doi: 10.1006/pest.1998.2338 |
[40] |
Andrews C J, Cummins I, Skipsey M, Grundy N M, Jepson I, Townson J, Edwards R. Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.), selective enhancement by herbicides and herbicide safeners. Pest Biochem Phys, 2005, 82: 205-219.
doi: 10.1016/j.pestbp.2004.11.009 |
[41] |
Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004, 271: 511-521.
doi: 10.1007/s00438-004-1006-8 pmid: 15069639 |
[1] | XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965. |
[2] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[3] | ZHAO Li-Rong, LI Wen, WANG Li-Min, QI Yan-Ni, LI Wen-Juan, XIE Ya-Ping, DANG Zhao, ZHAO Wei, ZHANG Jian-Ping. Identification and relative expression pattern of PLA1 gene family in flax [J]. Acta Agronomica Sinica, 2023, 49(11): 2949-2965. |
[4] | WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61. |
[5] | CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582. |
[6] | YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258. |
[7] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
[8] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[9] | Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507. |
[10] | ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521. |
[11] | Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366. |
[12] | Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031. |
[13] | SU Ya-Chun**,HUANG Long**,LING Hui,WANG Zhu-Qing,LIU Feng,SU Wei-Hua,HUANG Ning,WU Qi-Bin, GAO Shi-Wu,QUE You-Xiong*. Cloning and Expression Analysis of CDK Gene in Sugarcane [J]. Acta Agron Sin, 2017, 43(01): 42-50. |
[14] | LIU Fang,LIU Rui-Yang,PENG Ye,GUAN Chun-Yun. Cloning and Expression of BnFAD2-C1 Gene Involved in Brassica napus and Analysis of Transcription Regulation Elements [J]. Acta Agron Sin, 2015, 41(11): 1663-1670. |
[15] | ZHU Xiao-Ling,CHEN Hai-Feng,WANG Cheng,HAO Qing-Nan,CHEN Li-Miao,GUO Dan-Dan,WU Bao-Duo,CHEN Shui-Lian,SHA Ai-Hua,ZHOU Rong,ZHOU Xin-An. Molecular Cloning and Bioinformatics Analysis of K+ Transporter Gene (GmKT12) from Soybean (Glycine max [L.] Merri) [J]. Acta Agron Sin, 2013, 39(09): 1701-1709. |
|