Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2949-3295.doi: 10.3724/SP.J.1006.2023.24224

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and relative expression pattern of PLA1 gene family in flax

ZHAO Li-Rong(), LI Wen, WANG Li-Min, QI Yan-Ni, LI Wen-Juan, XIE Ya-Ping, DANG Zhao, ZHAO Wei, ZHANG Jian-Ping()   

  1. Institute of Crops, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2022-10-09 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-23
  • Supported by:
    Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2020GAAS08);Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2022GAAS04);China Agriculture Research System (Oil) of MOF and MARA, the Science and Technology Project of Gansu Province(21JR7RA722);China Agriculture Research System (Oil) of MOF and MARA, the Science and Technology Project of Gansu Province(21JR1RA354);Major Science and Technology Project of Gansu Province(21ZD4NA022-02);Science and Technology Planing Project of Anning District(2022-JB-10)

Abstract:

Phospholipase A1 (PLA1) plays an important role in plant growth and development and stress responses. However, there is no function study of PLA1 in flax. In this study, we identified the PLA1 gene family in seven species including flax by bioinformatics, and analyzed the sequence characteristics, phylogenetic evolution, cis-acting elements, collinearity, and replication events of PLA1 (LuPLA1) genes in flax. Transcriptome data were used to analyze the relative expression patterns in different genetic backgrounds and organs, and qRT-PCR was used to analyze the relative expression patterns in different tissues and developmental stages, and under different stress treatments. The results showed that there were 14, 21, 15, 20, 41, 18, and 35 PLA1 members identified in flax, Arabidopsis, maize, rice, soybean, castor, and cassava, respectively. LuPLA1 were distributed on 8 chromosomes. Sequence analysis showed that except for LuPLA1-7 and LuPLA1-10, all the other members had introns and most of them had one intron, with protein length of 388-1759 aa, isoelectric point of 5.99-9.19, and molecular weight of 41.55-192.61 kD. All the LuPLA1 proteins were hydrophilic, and most of them localized in vacuoles and contained 4-25 motifs. Phylogenetic analysis revealed that the PLA1 proteins were divided into four clades, and clade IV had the largest number of PLA1 members. Collinearity analysis indicated that LuPLA1 had homologous genes in Arabidopsis, maize, rice, cassava, and soybean, and had the most homologous genes with soybean and cassava. There were two tandem duplicated gene pairs and seven segment duplicated genes pairs of LuPLA1 family members, and all the duplicated genes underwent purification selection. Transcriptome analysis showed that most LuPLA1 members exhibited organ-specific expression patterns. The promoter regions of LuPLA1 contained a large number of hormone and stress response elements. The qRT-PCR further confirmed that the relative expression of LuPLA1 genes were induced by hormone, drought, high salt, low temperature, and high temperature. LuPLA1-1 was induced by IAA. LuPLA1-1 and LuPLA1-6 were induced by NAA. LuPLA1-1, LuPLA1-5, and LuPLA1-6 were induced by GA3. LuPLA1-12/14 was induced by NaCl and PEG. Except for LuPLA1-2/4, the other genes were induced by high temperature. All LuPLA1 members were induced by low temperature, and the response to low temperature was the most obvious. This study laid a foundation for further analysis of the function of LuPLA1 gene family.

Key words: flax, LuPLA1, gene family, the relative expression pattern

Table S1

Primers for qRT-PCR"

基因名称
Gene name
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
GAPDH CTTTACCCTCAGCAAATCCG AGGTTCTTCCCGCTCTCAAT
PLA1-1 TCTTCCCTCAGAACAGAGGTGTATTT AGTCTTGTTGGACCCTGTCCCTAG
PLA1-2/4 CCTCTTCTCGTCCCTTGCTTTGA GGAGAAGAGCAGGGAACGAAACT
PLA1-3/11 ATTTCCGTTTATGGGAGGTTTGCC TAAAGGCAAATACCCTCCAAACGG
PLA1-5 CTTGATGGGGAGAATGTGAGGA GTTGGAGCTGCGGAAGTTGATA
PLA1-6 GCTTGATGGGAAGGATGTGAGGAT AGAGGGCGTTTGTTGTCATTTGGT
PLA1-7/10 CGAATTGACCCTAAAGGACACG GCTTAACTGGGATTTCCTGTGC
PLA1-8/9 GAACAGCGACGAATAATCCAACG CTTGTCGCTGCTTATTAGGTTGC
PLA1-12/14 ATGGGAGGTTTGCCGGGCTAC TACCCTCCAAACGGCCCGATG

Table S2

Accession numbers of transcriptome data"

名称
Name
登录号
Accession number
名称
Name
登录号
Accession number
Longya-10-fruit-1 SRR8281918 Heiya-14-fruit-1 SRR8281912
Longya-10-fruit-2 SRR8281919 Heiya-14-fruit-2 SRR8281913
Longya-10-stem-1 SRR8281920 Heiya-14-stem-1 SRR8281916
Longya-10-stemt-2 SRR8281921 Heiya-14-stem-2 SRR8281917

Fig. 1

Chromosome location of LuPLA1 genes The orange line indicates segmental duplication, and the red rectangle indicates tandem duplication."

Table 1

Duplication analysis of LuPLA1 genes in flax"

基因对
Gene pairs
复制事件
Duplication events
同义替换率
Ks
非同义替换率
Ka
Ka/Ks 选择类型
Selection type
分歧时间
Divergence time (Mya)
LuPLA1-7/LuPLA1-8 串联复制
Tandem duplication
0.5411 0.1419 0.2622 纯化选择
Purifying selection
44.3525
LuPLA1-9/LuPLA1-10 串联复制
Tandem duplication
0.5093 0.1448 0.2843 纯化选择
Purifying selection
41.7459
LuPLA1-2/LuPLA1-4 片段复制
Segmental duplication
0.1189 0.0213 0.1791 纯化选择
Purifying selection
9.7459
LuPLA1-3/LuPLA1-11 片段复制
Segmental duplication
0.1217 0.0061 0.0501 纯化选择
Purifying selection
9.9754
LuPLA1-3/LuPLA1-12 片段复制
Segmental duplication
1.0065 0.0692 0.0687 纯化选择
Purifying selection
82.5000
LuPLA1-7/LuPLA1-9 片段复制
Segmental duplication
0.5776 0.1400 0.2424 纯化选择
Purifying selection
47.3443
LuPLA1-11/LuPLA1-12 片段复制
Segmental duplication
0.9443 0.0758 0.0803 纯化选择
Purifying selection
77.4016
LuPLA1-11/LuPLA1-14 片段复制
Segmental duplication
0.9403 0.0770 0.0819 纯化选择
Purifying selection
77.0738
LuPLA1-12/LuPLA1-14 片段复制
Segmental duplication
0.0845 0.0135 0.1598 纯化选择
Purifying selection
6.9262

Fig. 2

Collinearity of LuPLA1 genes in flax and its collinearity with other species"

Table 2

Basic characteristics of LuPLA1 family members"

基因名称
Gene name
基因号
Gene ID
染色体位置
Chromosome
location
外显子数量
No. of
exons
蛋白序列长度
Protein
length (aa)
分子量
Molecular
weight (kD)
等电点
Isoelectric point
亚细胞定位
Subcellular
location
LuPLA1-1 L.us.o.m.scaffold73.66 Chr1:21780419-
21783081(-)
7 459 50.96 5.99 液泡
Vacuole
LuPLA1-2 L.us.o.m.scaffold17.61 Chr5:5454111-
5456030(-)
2 388 41.55 8.08 液泡
Vacuole
LuPLA1-3 L.us.o.m.scaffold255.68 Chr5:17092681-
17095829(-)
2 463 50.92 8.00 液泡
Vacuole
LuPLA1-4 L.us.o.m.scaffold11.49 Chr6:4217828-
4219482(+)
2 390 41.81 7.52 液泡
Vacuole
LuPLA1-5 L.us.o.m.scaffold100.2 Chr7:7572800-
7576425(+)
7 400 44.50 6.97 液泡
Vacuole
LuPLA1-6 L.us.o.m.scaffold284.7 Chr7:7630026-
7633875(+)
7 391 43.23 6.92 液泡
Vacuole
LuPLA1-7 L.us.o.m.scaffold219.29 Chr8:17228540-
17230314(+)
1 483 52.59 9.19 细胞膜, 液泡
Cell membrane,
vacuole
LuPLA1-8 L.us.o.m.scaffold219.27 Chr8:17242561-
17243859(+)
2 421 45.31 8.99 液泡
Vacuole
LuPLA1-9 L.us.o.m.scaffold253.44 Chr11:1866126-
1867424(-)
2 421 45.30 8.99 液泡
Vacuole
LuPLA1-10 L.us.o.m.scaffold253.45 Chr11:1884093-
1885373(-)
1 426 45.90 9.15 叶绿体, 液泡
Chloroplast,
vacuole
LuPLA1-11 L.us.o.m.scaffold144.142 Chr11:13906282-
13908918(-)
2 463 50.94 7.55 叶绿体, 液泡
Chloroplast,
vacuole
LuPLA1-12 L.us.o.m.scaffold263.24 Chr12:5589259-
5592930(+)
2 453 49.49 7.01 液泡
Vacuole
LuPLA1-13 L.us.o.m.scaffold220.83 Chr15:8920678-
8929774(-)
28 1759 192.61 6.80 液泡
Vacuole
LuPLA1-14 L.us.o.m.scaffold0.620 Chr15:11287238-
11289213(-)
2 452 49.43 6.97 叶绿体, 液泡
Chloroplast,
vacuole

Fig. S1

Prediction of hydrophilicity and hydrophobicity of PLA1 gene family in flax"

Fig. S2

Secondary structure of LuPLA1 encoding proteins"

Fig. 3

Phylogenetic tree of PLA1 family in different species"

Fig. 4

Phylogenetic tree, conserved motif, and gene structure of LuPLA1 gene family"

Fig. 5

Cis-acting elements in promoters of LuPLA1 family members"

Fig. 6

Heat map of the relative expression pattern of LuPLA1 genes in different varieties and organs"

Fig. S3

Relative expression pattern of LuPLA1 genes in seeds and anther at different developmental stages of Longya 15 (L15)"

Fig. 7

Relative expression pattern of LuPLA1 genes under IAA (A) and NAA (B) treatments Different lowercase letters mean significant differences at the 0.05 probability level."

Fig. 8

Relative expression pattern of LuPLA1 genes under GA3 (A) and NaCl (B) treatments Different lowercase letters mean significant differences at the 0.05 probability level."

Fig. 9

Relative expression pattern of LuPLA1 genes under PEG (A) and different temperature (B) treatments Different lowercase letters mean significant differences at the 0.05 probability level."

[1] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 71.
doi: 10.1186/1471-2229-10-71
[2] 党照, 张建平, 王利民, 李闻娟, 齐燕妮, 谢亚萍, 赵玮. 胡麻新品种陇亚15号选育技术报告. 中国麻业科学, 2020, 42(4): 145-149.
Dang Z, Zhang J P, Wang L M, Li W J, Qi Y N, Xie Y P, Zhao W. Technical report on breeding of a new flax variety Longya 15. Plant Fiber Sci China, 2020, 42(4): 145-149 (in Chinese with English abstract).
[3] 米智, 刘荔贞, 李慧, 张弘驰. 响应面法优化胡麻籽饼粕黄酮提取工艺及抗氧化活性的研究. 中国粮油学报, 2022, 37(3): 1-11.
Mi Z, Liu L Z, Li H, Zhang H C. Optimization of flavonoids extraction and antioxidant activity of flax seed cake by response surface method. J Chin Cereals Oils Assoc, 2022, 37(3): 1-11 (in Chinese with English abstract).
[4] 赵利, 王斌, 苗红梅, 马琴. 胡麻种质资源籽粒表型与品质性状评价及其相关性研究. 植物遗传资源学报, 2020, 21: 243-251.
doi: 10.13430/j.cnki.jpgr.20191107001
Zhao L, Wang B, Miao H M, Ma Q. Evaluation and correlation study on grain phenotype and quality traits of flax germplasm resources. J Plant Genet Resour, 2020, 21: 243-251 (in Chinese with English abstract).
[5] 杨阳, 王晶懋. 百合响应非生物胁迫的分子机制研究. 分子植物育种, 2018, 16: 5046-5054.
Yang Y, Wang J M. Molecular mechanism of lily response to abiotic stress. Mol Plant Breed, 2018, 16: 5046-5054 (in Chinese with English abstract).
[6] Gilles L M, Khaled A, Laffaire J B, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J P, Rogowsky P M, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J, 2017, 36: 707-717.
doi: 10.15252/embj.201796603 pmid: 28228439
[7] 葛金涛, 王江英, 汤雪燕, 腾年军, 朱朋波, 孙明伟, 赵统利, 邵小斌. 百合叶片磷脂酶基因家族转录组学分析. 江苏农业科学, 2022, 50(3): 36-42.
Ge J T, Wang J Y, Tang X Y, Teng N J, Zhu P B, Sun M W, Zhao T L, Shao X B. Transcriptomic analysis of the phospholipase gene family in lily leaves. Jiangsu Agric Sci, 2022, 50(3): 36-42 (in Chinese with English abstract).
[8] Chapman K D. Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci, 1998, 3: 419-426.
doi: 10.1016/S1360-1385(98)01326-0
[9] Scherer G F E. Activation of phospholipase A2, by auxin and mastoparan in hypocotyl segments from zucchini and sunflower. J Plant Physiol, 1995, 145: 483-490.
doi: 10.1016/S0176-1617(11)81775-X
[10] Günther F, Scherer E, Arnold B. Inhibitors of animal phospholipase A2 enzymes are selective inhibitors of auxin-dependent growth. Implications for auxin-induced signal transduction. Planta, 1997, 202: 462-469.
doi: 10.1007/s004250050150
[11] Fan L, Wang Z X. Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 1997, 9: 2183-2196.
doi: 10.1105/tpc.9.12.2183 pmid: 9437863
[12] 苏燕南. 磷脂酶A1基因的克隆和原核表达. 安徽工程大学硕士学位论文,安徽芜湖, 2013.
Su Y N. Cloning and Prokaryotic Expression of Phospholipase A1 Gene. MS Thesis of Anhui Polytechnic University, Wuhu, Anhui, China, 2013 (in Chinese with English abstract).
[13] 程实. 非钙离子依赖型磷脂酶A1的异源表达及制备. 江南大学博士学位论文,江苏无锡, 2021.
Cheng S. Heterologous Expression and Preparation of Non Calcium Ion Dependent Phospholipase A1. PhD Dissertation of Jiangnan University, Wuxi, Jiangsu, China, 2021 (in Chinese with English abstract).
[14] 安炎黄. 磷脂酶参与冬凌草甲素对拟南芥的化感潜能作用. 西北师范大学硕士学位论文,甘肃兰州, 2019.
An Y H. Phospholipase Involved in the Allelopathic Effect of Rubescens on Arabidopsis thaliana. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2019 (in Chinese with English abstract).
[15] Kenji M, Sachiko F, Miho I, Tadahiko K. A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase. FEBS Lett, 2004, 569: 195-200.
doi: 10.1016/j.febslet.2004.05.064 pmid: 15225633
[16] Nishihara M, Kamata M, Koyama T, Yazawa K. New Phospholipase A1-producing bacteria from a marine fish. Mar Biotechnol, 2008, 10: 382-387.
doi: 10.1007/s10126-007-9074-5 pmid: 18293038
[17] Tavernier E, Pugin A. Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity. Biochim Biophys Acta, 1995, 1233: 118-122.
pmid: 7865536
[18] Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 2001, 13: 2191-2209.
doi: 10.1105/tpc.010192 pmid: 11595796
[19] Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Navé P. Expression in yeast of a novel phospholipase A1 cDNA from Arabidopsis thaliana. Eur J Biochem, 2004, 271: 3752-3764.
doi: 10.1111/ejb.2004.271.issue-18
[20] Seo Y S, Eun Y K, Hyung G M, Woo T K. Heterologous expression, and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J Cell Mol Biol, 2008, 53: 895-908.
doi: 10.1111/j.1365-313X.2007.03380.x
[21] 姜惠娜, 敬松, 李晗玉, 佘木子, 张新飞, 呼天明, 付娟娟, 苗彦军. 西藏野生垂穗披碱草EnPLA1基因克隆与表达分析. 草地学报, 2021, 29: 2141-2148.
doi: 10.11733/j.issn.1007-0435.2021.10.004
Jiang H N, Jing S, Li H Y, She M Z, Zhang X F, Hu T M, Fu J J, Miao Y J. Cloning and expression analysis of EnPLA1 gene in wild Flagellae from Xizang. Acta Agrest Sin, 2021, 29: 2141-2148 (in Chinese with English abstract).
[22] Hyun Y, Choi S, Hwang H J, Yu J, Nam S J, Ko J, Park J Y, Seo Y S, Kim E Y, Ryu S B, Kim W O, Lee Y H, Kang H, Lee I. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell, 2008, 14: 183-192.
doi: 10.1016/j.devcel.2007.11.010 pmid: 18267087
[23] Liu C X, Li X, Meng D X, Zhong Y, Chen C, Dong X, Xu X W, Chen B J, Li W, Li L, Tian X L, Zhao H M, Song W B, Luo H S, Zhang Q H, Lai J S, Jin W W, Yan J B, Chen S J. A 4-bp insertion at ZmPLA1encoding a putative phospholipase a generates haploid induction in maize. Mol Plant, 2017, 10: 520-522.
doi: 10.1016/j.molp.2017.01.011
[24] 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析. 作物学报, 2021, 47: 816-825.
Wen Q, Jia S S, Wang J F, Huang C H, Wang H, Chen Z Q, Guo T. Creation and analysis of OsMATL mutant of rice haploid inducible gene. Acta Agron Sin, 2021, 47: 816-825 (in Chinese with English abstract).
[25] Liu H Y, Wang K, Jia Z M, Gong Q, Lin Z S, Du L P, Pei X W, Ye X G. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot, 2020, 71: 1337-1349.
doi: 10.1093/jxb/erz529
[26] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[27] 张丹丹, 杨瑶君, 江纳, 付春. 黄藤Dof家族的全基因组鉴定及系统进化分析. 西南林业大学学报(自然科学), 2021, 41(6): 126-138.
Zhang D D, Yang Y J, Jiang N, Fu C. Genome-wide identification and phylogenetic analysis of the Dof family of Rattan japonica. J Southwest For Univ (Nat Sci), 2021, 41(6): 126-138 (in Chinese with English abstract).
[28] 刘艳丽, 周媛, 曹丹, 马林龙, 龚自明, 金孝芳. 基于茶蛋白质组学数据分析植物亚细胞定位预测软件的应用. 植物科学学报, 2020, 38: 671-677.
Liu Y L, Zhou Y, Cao D, Ma L L, Gong Z M, Jin X F. Application of plant subcellular localization prediction software based on tea proteomic data analysis. Plant Sci J, 2020, 38: 671-677 (in Chinese with English abstract).
[29] 冷非凡, 罗文, 李渊利, 孙尚琛, 王永刚. 嗜铁钩端螺旋菌中铁硫簇相关蛋白的生物信息学分析. 基因组学与应用生物学, 2018, 37: 5296-5303.
Leng F F, Luo W, Li Y L, Sun S C, Wang Y G. Bioinformatics analysis of iron-sulfur cluster related proteins in Helicobacter ferrophila. Genomics Appl Biol, 2018, 37: 5296-5303 (in Chinese with English abstract).
[30] 唐永凯, 贾永义. 荧光定量PCR数据处理方法的探讨. 生物技术, 2008, (3): 89-91.
Tang Y K, Jia Y Y. Discussion on data processing methods of fluorescence quantitative PCR. Biotechnology, 2008, (3): 89-91 (in Chinese with English abstract).
[31] 张群, 贾倩茹, 章文华. 磷脂介导的生长素信号转导研究进展. 南京农业大学学报, 2020, 43(2): 195-203.
Zhang Q, Jia Q R, Zhang W H. Research progress in phospholipid-mediated auxin signal transduction. J Nanjing Agric Univ, 2020, 43(2): 195-203 (in Chinese with English abstract).
[32] Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z Y, McCuiston J, Wang W L, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 7639: 105-109.
[33] Zhu S H, Wang X Y, Chen W, Yao J B, Li Y, Fang S T, Lyu Y J, Li X X, Pan J W, Liu C Y, Li Q L, Zhang Y S. Cotton DMP gene family: characterization, evolution, and expression profiles during development and stress. Int J Biol Macromol, 2021, 183: 1257-1269.
doi: 10.1016/j.ijbiomac.2021.05.023 pmid: 33965485
[1] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[2] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[3] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[4] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[5] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[6] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[7] QI Yan-Ni, LI Wen-Juan, ZHAO Li-Rong, LI Wen, WANG Li-Min, XIE Ya-Ping, ZHAO Wei, DANG Zhao, ZHANG Jian-Ping. Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax [J]. Acta Agronomica Sinica, 2023, 49(3): 687-702.
[8] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[9] ZHAO Xiao-Xin, HUANG Shuo-Qi, TAN Wen-Bo, XING Wang, LIU Da-Li. Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet [J]. Acta Agronomica Sinica, 2023, 49(12): 3302-3314.
[10] CHEN Wu-Jun, LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin. Identification and analysis of BnKNOX gene family in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(11): 2991-3006.
[11] SUN Lan-Lan, MA Rong-Hui, XUE Fei, YANG Mu-Han, XU Hong-Le, SU Wang-Cang, LU Chuan-Tao, WU Ren-Hai. Cloning and the relative expression pattern of GST31 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(10): 2717-2726.
[12] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[13] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[14] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[15] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .