Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2991-3006.doi: 10.3724/SP.J.1006.2023.34027

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and analysis of BnKNOX gene family in Brassica napus

CHEN Wu-Jun(), LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin()   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-02-10 Accepted:2023-04-17 Online:2023-11-12 Published:2023-04-24
  • Supported by:
    National Natural Science Foundation of China(32272055);National Natural Science Foundation of China(31972963);Graduate Training Program for Innovation and Entrepreneurship(SJCX21_1602);Qinglan Project of Jiangsu Province.

Abstract:

The plant specific KNOTTED-LIKE HOMEOBOX (KNOX) protein is a transcription factor family that plays an important role in plant growth and development, as well as responses to various stresses. KNOX proteins contain four conserved domains [a three amino acid loop extension (TALE) type homeodomain (HD), ELK domain, and two subdomains (KNOX1 and KNOX2)]. At present, the comprehensive study of BnKNOX genes in Brassica napus has not been reported yet. In this study, 36 BnKNOX family members were identified in B. napus genome via bioinformatic analyses, which were classified into three sub-families (I, II, and M-type) based on sequence alignment and phylogenetic analyses. Evolutionary analysis showed that the whole genome duplication (WGD) and segmental duplication were the main driving forces for the expansion of BnKNOX gene family. Based on the RNA-seq data of developing tissues and organs of B. napus, BnKNAT25/26/29/30 were specifically expressed in endosperm and developing seeds, while BnKNAT31/32/34 were highly expressed in mature seeds. We analyzed the cis-acting elements and expression pattern of BnKNOXs under various abiotic stresses, and identified 17 BnKNOX members that might be involved in drought and osmotic stress responses.

Key words: Brassica napus, KNOX, gene family, expression pattern, abiotic stress

Table 1

qPCR primers used in this study"

基因名称
Gene name
正向引物序列
Forward primer sequence (5'-3')
反向引物序列
Reverse primer sequence (5'-3')
BnKNAT1 AGCCATCCACAATACTCAAGAA CGCCGTAATTTTATCAACCACT
BnKNAT2 AGATTAGCATGTTGTGTCAGGA ATCCACTGTACTTCTTCAGCAA
BnKNAT3 ACCTGAGGTGGTCGATAAAATT AAGAAACGACCCACATGAATTG
BnKNAT4 CGAAAATCGCTTCTCATCCTTT CGTTTCGATCTTGTTCAGGAAA
BnKNAT5 TTCTTCGGAGAGTCTTATGTCG GAATCTCTTCCAACACATACGC
BnKNAT11 CTCTCATCCACTATACGAGCAG AGTGGTCAAGCTCCTTATCATC
BnKNAT12 GTGACGCCATGGAAAACATTAC CTGCTCGTATAGTGGATGAGAG
BnKNAT13 CACTATACGAACGGCTTTTGTC GTCCATAGTAGAGTACTTGGCC
BnKNAT18 GATGGAATGTACGGCTTTCATC AGTCGGAAGGAAACATCAGATT
BnKNAT19 GAAAGCTACCAAGAGAAGCAAG CAAAAGGCATATTCTCGGACTG
BnKNAT20 CCTTCTGATTACCAAACCTTGC TACAAAGGATGACAAGCGATCT
BnKNAT22 GTCTCTCTCGGTATCATCAAGG CCTTGCGAGATCCGACTTATAT
BnKNAT23 ATGTGACTACTCAGATAAGCCG GGATACGAAGGATGACAAGCTA
BnKNAT24 TGACACAATGACAATGGAGGTA ATCTTCGCATATTTGTTTCCCG
BnKNAT25 TACCATGTGCGAGCAATTATTG GCTGTTCTTTGAAGCTACACAA
BnKNAT33 TAAGGGAGTTGAAGGAAGCAAT TAGCACCGAATATAGCTGTCAG
BnSTM2 GTAGTAATGGACGCAACACATC GTGCAACGTTCCTAAGTATTCC

Fig. 1

Distribution and composition of the characteristic motifs in BnKNOX proteins A: the structure diagram of motifs in BnKNOX proteins; B: KNOX1 domain; C: KNOX2 domain; D: ELK domain; E: HD domain."

Table 2

Information of BnKNOX protein members in Brassica napus"

基因号
Gene ID
基因名
Gene name
拟南芥号
Arabidopsis thaliana locus
蛋白长度
Protein length (AA)
分子量
Molecular weight (kD)
等电点Isoelectric point (pI) 亚细胞定位
Localization
BnaA03g23610D BnKNAT1 AT4G08150.1 402 46.36 5.82 细胞核Nucleus
BnaC03g28030D BnKNAT2 AT4G08150.1 193 23.07 7.55 细胞核Nucleus
BnaCnng59830D BnKNAT3 AT4G08150.1 349 40.19 5.89 细胞核Nucleus
BnaA02g14950D BnKNAT4 AT1G70510.1 327 36.94 4.81 细胞核Nucleus
BnaC02g19900D BnKNAT5 AT1G70510.1 327 36.90 4.80 细胞核Nucleus
BnaA02g32110D BnKNAT6 AT5G25220.1 420 46.29 5.40 细胞核Nucleus
BnaA06g27560D BnKNAT7 AT5G25220.1 299 33.43 5.82 细胞核Nucleus
BnaC02g40790D BnKNAT8 AT5G25220.1 404 44.84 5.44 细胞核Nucleus
BnaC07g29530D BnKNAT9 AT5G25220.1 444 48.91 5.11 细胞核Nucleus
BnaA02g00810D BnKNAT10 AT5G11060.1 393 44.28 5.65 细胞核Nucleus
BnaA03g03190D BnKNAT11 AT5G11060.1 386 43.15 5.67 细胞核Nucleus
BnaC03g04580D BnKNAT12 AT5G11060.1 302 33.77 5.99 细胞核Nucleus
BnaCnng20070D BnKNAT13 AT5G11060.1 393 44.23 5.62 细胞核Nucleus
BnaA01g04870D BnKNAT14 AT4G32040.1 374 41.91 5.56 细胞核Nucleus
BnaA03g51900D BnKNAT15 AT4G32040.1 382 43.18 5.48 细胞核Nucleus
BnaC01g06410D BnKNAT16 AT4G32040.1 374 41.86 5.71 细胞核Nucleus
BnaC07g43650D BnKNAT17 AT4G32040.1 400 45.35 5.37 细胞核Nucleus
BnaA08g20500D BnKNAT18 AT1G23380.1 208 22.92 4.49 细胞核Nucleus
BnaA08g20510D BnKNAT19 AT1G23380.1 121 14.03 8.25 细胞核Nucleus
BnaA09g31100D BnKNAT20 AT1G23380.1 235 26.11 4.41 细胞核Nucleus
BnaAnng30720D BnKNAT21 AT1G23380.1 204 23.26 5.96 细胞核Nucleus
BnaC05g18670D BnKNAT22 AT1G23380.1 221 24.45 4.35 细胞核Nucleus
BnaC08g06320D BnKNAT23 AT1G23380.1 314 35.23 5.10 细胞核Nucleus
BnaCnng70390D BnKNAT24 AT1G23380.2 205 23.48 6.22 细胞核Nucleus
BnaA09g12980D BnKNAT25 AT1G62990.1 293 33.02 5.62 细胞核Nucleus
BnaA09g52990D BnKNAT26 AT1G62990.1 294 33.10 5.85 细胞核Nucleus
BnaC04g20090D BnKNAT27 AT1G62990.1 104 11.46 4.90 细胞核Nucleus
BnaC04g20110D BnKNAT28 AT1G62990.1 222 25.73 7.84 细胞核Nucleus
BnaC09g12900D BnKNAT29 AT1G62990.1 102 11.09 5.15 细胞核Nucleus
BnaCnng51440D BnKNAT30 AT1G62990.1 294 33.09 5.78 细胞核Nucleus
BnaA06g09570D BnKNAT31 AT1G14760.2 141 16.25 4.57 细胞核Nucleus
BnaA09g45470D BnKNAT32 AT1G14760.2 135 15.31 4.36 细胞核Nucleus
BnaC05g10940D BnKNAT33 AT1G14760.2 137 15.70 4.95 细胞核Nucleus
BnaC08g39310D BnKNAT34 AT1G14760.2 135 15.25 4.37 细胞核Nucleus
BnaA09g13310D BnSTM1 AT1G62360.1 383 43.11 5.82 细胞核Nucleus
BnaC09g13580D BnSTM2 AT1G62360.1 383 43.20 5.92 细胞核Nucleus

Fig. 2

Phylogenetic relationship of KNOX proteins in Arabidopsis thaliana, Brassica rapa, B. oleracea, and B. napus"

Fig. 3

Gene structure and motif composition of the BnKNOX gene family in Brassica napus A: the phylogenetic tree of BnKNOX proteins; B: the conserved motifs of KNOX proteins, Motif 1-15 in different colored blocks represent the motif composition; C: gene structure of BnKNOX genes. UTR: untranslated region; CDS: coding sequence."

Fig. 4

Chromosome distribution and collinearity of BnKNOX genes in Brassica napus"

Table S1

Duplication type of BnKNOX genes in Brassica napus"

基因号
Gene ID
基因名称
Gene name
复制方式
Duplication type
BnaA03g23610D BnKNAT1 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC03g28030D BnKNAT2 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaCnng59830D BnKNAT3 分散复制Dispersed duplication
BnaA02g14950D BnKNAT4 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC02g19900D BnKNAT5 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA02g32110D BnKNAT6 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA06g27560D BnKNAT7 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC02g40790D BnKNAT8 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC07g29530D BnKNAT9 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA02g00810D BnKNAT10 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA03g03190D BnKNAT11 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC03g04580D BnKNAT12 分散复制Dispersed duplication
BnaCnng20070D BnKNAT13 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA01g04870D BnKNAT14 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA03g51900D BnKNAT15 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC01g06410D BnKNAT16 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC07g43650D BnKNAT17 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA08g20500D BnKNAT18 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA08g20510D BnKNAT19 分散复制Dispersed duplication
BnaA09g31100D BnKNAT20 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaAnng30720D BnKNAT21 分散复制Dispersed duplication
BnaC05g18670D BnKNAT22 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC08g06320D BnKNAT23 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaCnng70390D BnKNAT24 分散复制Dispersed duplication
BnaA09g12980D BnKNAT25 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA09g52990D BnKNAT26 分散复制Dispersed duplication
BnaC04g20090D BnKNAT27 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC04g20110D BnKNAT28 分散复制Dispersed duplication
BnaC09g12900D BnKNAT29 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaCnng51440D BnKNAT30 分散复制Dispersed duplication
BnaA06g09570D BnKNAT31 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA09g45470D BnKNAT32 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC05g10940D BnKNAT33 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC08g39310D BnKNAT34 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA09g13310D BnSTM1 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC09g13580D BnSTM2 全基因组复制或片段复制Whole genome duplication or segmental duplication

Fig. 5

Collinearity of KNOX genes in Arabidopsis thaliana, Brassica rapa, and B. oleracea"

Fig. 6

Relative expression pattern of BnKNOX genes in different tissues and developmental stages of Brassica napus"

Table S2

RNA-seq data (FPKM) of BnKNOX genes in different tissues and developmental stages in Brassica napus"

基因号
Gene ID
基因名称Gene name 叶片Leaf 子叶Cotyledon 下胚轴Hypocotyl
Root
茎尖分生组织SAM 茎Stem 花苞Bud 花Flower 胚乳Endosperm 授粉后14 d角果Silique-14 DAP 授粉后21 d种子Seed-21 DAP 授粉后28 d种子Seed-28 DAP 授粉后35 d种子Seed-35 DAP 授粉后42 d种子Seed-42 DAP 授粉后50 d种子Seed-50 DAP
BnaA03g23610D BnKNAT1 0.016 0.010 38.382 1.843 3.479 29.144 1.896 2.620 0.005 0.915 0.118 0.771 0.135 0.038 0.000
BnaC03g28030D BnKNAT2 0.016 0.200 45.299 2.049 5.101 51.947 2.567 3.286 0 1.399 0.370 1.185 0.139 0.023 0.018
BnaCnng59830D BnKNAT3 0 0.027 14.658 0.836 1.934 13.746 0.691 0.851 0 0.425 0.207 0.656 0.041 0 0
BnaA02g14950D BnKNAT4 0.018 0.364 6.640 2.548 1.230 3.904 0.957 0.890 0 0.746 0.133 1.078 0.471 0.998 1.078
BnaC02g19900D BnKNAT5 0.191 0.507 8.285 2.451 4.376 9.119 1.963 1.544 0 1.744 0.438 0.989 0.543 1.121 0.927
BnaA02g32110D BnKNAT6 2.760 10.350 5.929 1.369 4.090 2.329 5.397 8.268 0.830 9.239 2.211 1.630 0.838 1.501 1.715
BnaA06g27560D BnKNAT7 15.294 66.703 14.521 5.061 45.785 7.394 21.312 27.772 8.066 26.798 13.314 8.149 3.248 5.073 2.501
BnaC02g40790D BnKNAT8 3.086 21.930 18.387 3.817 7.507 2.332 3.834 2.333 0.439 8.187 1.745 0.699 0.251 0.962 2.632
BnaC07g29530D BnKNAT9 21.780 35.189 8.946 10.544 48.375 8.729 24.791 30.841 4.942 31.374 18.312 7.426 3.727 4.128 4.535
BnaA02g00810D BnKNAT10 6.884 8.202 1.289 0.033 16.883 1.866 7.954 5.470 1.157 11.089 1.673 3.216 0.577 0.097 0.089
BnaA03g03190D BnKNAT11 10.194 2.581 0.646 0.135 10.561 2.062 1.017 2.510 0.125 4.394 0.372 1.823 0.454 0.072 0.116
BnaC03g04580D BnKNAT12 5.192 8.137 1.622 0.472 8.129 1.447 1.784 3.371 0.372 4.989 0.574 2.097 0.444 0.066 0.033
BnaCnng20070D BnKNAT13 2.811 0 0 0 7.802 0.882 6.550 7.581 1.448 6.022 0.836 1.446 0.447 0.018 0.012
BnaA01g04870D BnKNAT14 1.749 8.448 14.776 12.178 2.868 2.952 1.899 0.651 0 5.498 3.699 1.433 4.451 2.595 2.046
BnaA03g51900D BnKNAT15 7.624 34.107 35.739 56.554 10.255 4.506 3.373 3.358 6.662 8.299 7.237 6.074 3.798 4.120 3.453
BnaC01g06410D BnKNAT16 0.679 3.106 4.643 2.947 1.017 0.940 0.692 0.080 0 1.220 0.530 0.904 2.461 0.995 0.785
BnaC07g43650D BnKNAT17 6.761 15.548 31.413 34.109 9.369 6.851 4.481 4.621 8.137 10.765 14.927 9.026 6.043 3.595 1.987
BnaA08g20500D BnKNAT18 0.006 0 9.688 1.984 1.673 6.009 2.118 2.704 0.010 0.095 0.146 0.285 0.210 0.177 0.385
BnaA08g20510D BnKNAT19 0.006 0 9.688 1.984 1.673 6.009 2.118 2.704 0.010 0.095 0.146 0.285 0.210 0.177 0.385
BnaA09g31100D BnKNAT20 0.019 0 2.196 0.385 1.311 1.625 0.478 0.229 0.128 0.197 0.315 0.377 0.110 0.062 0.106
BnaAnng30720D BnKNAT21 0.011 0.043 2.302 0.614 0.684 1.250 0.441 0.244 0.181 0.336 0.693 0.312 0.022 0.264 0.088
BnaC05g18670D BnKNAT22 0.023 0.022 1.390 0.582 0.768 1.340 0.687 0.474 0.002 0.078 0.044 0.126 0.039 0.060 0.031
BnaC08g06320D BnKNAT23 0.023 0.357 23.487 2.001 5.116 12.296 2.922 4.588 0 0.213 0.162 1.089 1.002 0.716 2.628
BnaCnng70390D BnKNAT24 0.045 0.032 1.723 1.409 1.276 2.123 1.039 0.811 0.019 0.079 0.118 0.275 0.113 0.074 0.044
BnaA09g12980D BnKNAT25 1.334 0.865 5.515 5.768 1.228 3.900 7.155 4.796 11.808 11.919 24.940 13.193 8.877 5.448 0.014
BnaA09g52990D BnKNAT26 1.294 0.096 0.444 0.534 0.549 17.354 12.259 5.379 22.756 21.863 50.558 28.156 24.423 7.101 0.053
BnaC04g20090D BnKNAT27 0.070 0.037 0.121 0.116 0.296 1.135 0.391 0.107 0.512 0.472 2.355 0.660 0.797 0.168 0.016
BnaC04g20110D BnKNAT28 0 0 0 0 0 0.079 0.023 0 0 0 0 0 0 0 0
BnaC09g12900D BnKNAT29 2.546 0.378 1.021 0.379 1.235 3.922 4.268 7.819 7.158 14.842 16.892 9.738 6.075 3.079 0.032
BnaCnng51440D BnKNAT30 1.390 0.146 0.978 0.900 1.741 13.686 10.700 5.352 21.985 16.103 37.943 19.860 17.638 5.264 0.017
BnaA06g09570D BnKNAT31 0 0 0 0.060 1.292 0 4.234 2.614 0 0.083 0.862 0 0 0.188 1.526
BnaA09g45470D BnKNAT32 0 0 0 0.688 1.327 0 0 0 0 0.034 0.398 0.348 0.080 1.149 3.517
BnaC05g10940D BnKNAT33 0 0 0 0 0.966 0.024 7.893 4.128 0 0 0.172 0.370 0.055 0.080 0.089
BnaC08g39310D BnKNAT34 0 0 0 0.245 1.902 0 0.021 0 0.067 0.114 3.166 0.137 0.063 0.239 1.408
BnaA09g13310D BnSTM1 0.020 0 0.735 1.191 5.619 66.414 8.814 11.525 0 2.708 0.166 0.286 0.160 0.022 0.027
BnaC09g13580D BnSTM2 0.010 0 6.015 0.037 8.231 85.818 12.789 16.183 0 2.980 0.284 0.485 0.133 0.051 0.074

Fig. 7

Cis-element analysis on the promoter regions of BnKNOX genes"

Fig. 8

Relative expression pattern of BnKNOX in leaves of Brassica napus under drought stress"

Fig. 9

Relative expression pattern of BnKNOX in leaves of Brassica napus under osmotic stress"

[1] Bürglin T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res, 1997, 25: 4173-4180.
doi: 10.1093/nar/25.21.4173 pmid: 9336443
[2] Mukherjee K, Bürglin T R. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol, 2007, 65: 137-153.
pmid: 17665086
[3] Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009, 26: 2775-2794.
doi: 10.1093/molbev/msp201 pmid: 19734295
[4] Vollbrecht E, Veit B, Sinha N, Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350: 241-243.
doi: 10.1038/350241a0
[5] Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. Front Plant Sci, 2015, 6: 882.
doi: 10.3389/fpls.2015.00882 pmid: 26557129
[6] Sakamoto T, Nishimura A, Tamaoki M, Kuba M, Tanaka H, Iwahori S, Matsuoka M. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins. Plant Cell, 1999, 11: 1419-1432.
pmid: 10449577
[7] Nagasaki H, Sakamoto T, Sato Y, Matsuoka M. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell, 2001, 13: 2085-2098.
pmid: 11549765
[8] Scofield S, Murray J A. KNOX gene function in plant stem cell niches. Plant Mol Biol, 2006, 60: 929-946.
doi: 10.1007/s11103-005-4478-y pmid: 16724262
[9] Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell, 1994, 6: 1877-1887.
doi: 10.1105/tpc.6.12.1877 pmid: 7866030
[10] Furumizu C, Alvarez J P, Sakakibara K, Bowman J L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet, 2015, 11: e1004980.
doi: 10.1371/journal.pgen.1004980
[11] Magnani E, Hake S. KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell, 2008, 20: 875-887.
doi: 10.1105/tpc.108.058495 pmid: 18398054
[12] Bueno N, Alvarez J M, Ordás R J. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. Plant Sci, 2020, 301: 110691.
doi: 10.1016/j.plantsci.2020.110691
[13] Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 1996, 122: 1567-1575.
doi: 10.1242/dev.122.5.1567 pmid: 8625843
[14] Chuck G, Lincoln C, Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell, 1996, 8: 1277-1289.
doi: 10.1105/tpc.8.8.1277 pmid: 8776897
[15] Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967-979.
doi: 10.1046/j.1365-313x.1996.10060967.x pmid: 9011081
[16] Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66-69.
doi: 10.1038/379066a0
[17] Rupp H M, Frank M, Werner T, Strnad M, Schmülling T. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J, 1999, 18: 557-563.
pmid: 10417706
[18] Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol, 2005, 15: 1560-1565.
doi: 10.1016/j.cub.2005.07.023 pmid: 16139211
[19] Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 2005, 15: 1566-1571.
doi: 10.1016/j.cub.2005.07.060
[20] Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J, 2007, 50: 767-781.
pmid: 17461793
[21] Scofield S, Dewitte W, Murray J A. A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav, 2008, 3: 257-259.
doi: 10.4161/psb.3.4.5194 pmid: 19704647
[22] Scofield S, Dewitte W, Murray J A. STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1. Plant Signal Behav, 2014, 9: e28934.
doi: 10.4161/psb.28934
[23] Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V. KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 2006, 18: 1900-1907.
doi: 10.1105/tpc.106.041988 pmid: 16798887
[24] Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 1996, 84: 735-744.
doi: 10.1016/s0092-8674(00)81051-x pmid: 8625411
[25] Bharathan G, Goliber T E, Moore C, Kessler S, Pham T, Sinha N R. Homologies in leaf form inferred from KNOXI gene expression during development. Science, 2002, 296: 1858-1860.
doi: 10.1126/science.1070343 pmid: 12052958
[26] Hay A, Tsiantis M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet, 2006, 38: 942-947.
doi: 10.1038/ng1835
[27] Nikolov L A, Tsiantis M. Interspecies gene transfer as a method for understanding the genetic basis for evolutionary change: progress, pitfalls, and prospects. Front Plant Sci, 2015, 6: 1135.
doi: 10.3389/fpls.2015.01135 pmid: 26734038
[28] Rast-Somssich M I, Broholm S, Jenkins H, Canales C, Vlad D, Kwantes M, Bilsborough G, Dello Ioio R, Ewing R M, Laufs P, Huijser P, Ohno C, Heisler M G, Hay A, Tsiantis M. Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta. Genes Dev, 2015, 29: 2391-2404.
[29] Das Gupta M, Tsiantis M. Gene networks and the evolution of plant morphology. Curr Opin Plant Biol, 2018, 45: 82-87.
doi: S1369-5266(18)30004-9 pmid: 29885565
[30] Shu Y, Tao Y, Wang S, Huang L, Yu X, Wang Z, Chen M, Gu W, Ma H. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant Cell Rep, 2015, 34: 1927-1937.
doi: 10.1007/s00299-015-1840-7 pmid: 26205508
[31] Tao Y, Chen M, Shu Y, Zhu Y, Wang S, Huang L, Yu X, Wang Z, Qian P, Gu W, Ma H. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell Tissue Organ Cult, 2018, 134: 331-344.
doi: 10.1007/s11240-018-1419-4
[32] Song X, Zhao Y, Wang J, Lu M Z. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. J Exp Bot, 2021, 72: 5625-5637.
doi: 10.1093/jxb/erab201
[33] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[34] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[35] Cheng F, Wu J, Wang X. Genome triplication drove the diversification of Brassica plants. Hortic Res, 2014, 1: 14024.
doi: 10.1038/hortres.2014.24
[36] Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis E S, Fujimoto R. Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci, 2021, 11: 619417.
doi: 10.3389/fpls.2020.619417
[37] El-Gebali S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E L L, Hirsh L, Paladin L, Piovesan D, Tosatto S C E, Finn R D. The Pfam protein families database in 2019. Nucleic Acids Res, 2019, 47: D427-D432.
[38] Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200-W204.
doi: 10.1093/nar/gky448
[39] Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: W327-W331.
doi: 10.1093/nar/gkh454 pmid: 15215404
[40] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[41] Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673
[42] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[43] Kong W, Ding L, Cheng J, Wang B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice, 2018, 11: 52.
doi: 10.1186/s12284-018-0243-0
[44] Ho C L, Geisler M. Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants (Basel), 2019, 8: 441.
[45] Meng L, Liu X, He C, Xu B, Li Y, Hu Y. Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci, 2020, 15: 346-363.
[46] Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629
[47] Sun R, Qin T, Wall S B, Wang Y, Guo X, Sun J, Liu Y, Wang Q, Zhang B. Genome-wide identification of KNOX transcription factors in cotton and the role of GhKNOX4-A and GhKNOX22-D in response to salt and drought stress. Int J Biol Macromol, 2023, 226: 1248-1260.
doi: 10.1016/j.ijbiomac.2022.11.238
[48] Han Y, Zhang L, Yan L, Xiong X, Wang W, Zhang X H, Min D H. Genome-wide analysis of TALE superfamily in Triticum aestivum reveals TaKNOX11-A is involved in abiotic stress response. BMC Genomics, 2022, 23: 89.
doi: 10.1186/s12864-022-08324-y
[1] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[2] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[3] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[4] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[5] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[6] TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842.
[7] YANG Yi-Dan, HE Du, LIU Jing, ZHANG Yan, CHEN Fei-Zhi, WU Yan-Fei, DU Xue-Zhu. Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum [J]. Acta Agronomica Sinica, 2023, 49(6): 1542-1550.
[8] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[9] MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517.
[10] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[11] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
[12] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[13] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[14] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[15] CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .