Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2991-3006.doi: 10.3724/SP.J.1006.2023.34027
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Wu-Jun(), LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin()
[1] |
Bürglin T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res, 1997, 25: 4173-4180.
doi: 10.1093/nar/25.21.4173 pmid: 9336443 |
[2] |
Mukherjee K, Bürglin T R. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol, 2007, 65: 137-153.
pmid: 17665086 |
[3] |
Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009, 26: 2775-2794.
doi: 10.1093/molbev/msp201 pmid: 19734295 |
[4] |
Vollbrecht E, Veit B, Sinha N, Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350: 241-243.
doi: 10.1038/350241a0 |
[5] |
Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. Front Plant Sci, 2015, 6: 882.
doi: 10.3389/fpls.2015.00882 pmid: 26557129 |
[6] |
Sakamoto T, Nishimura A, Tamaoki M, Kuba M, Tanaka H, Iwahori S, Matsuoka M. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins. Plant Cell, 1999, 11: 1419-1432.
pmid: 10449577 |
[7] |
Nagasaki H, Sakamoto T, Sato Y, Matsuoka M. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell, 2001, 13: 2085-2098.
pmid: 11549765 |
[8] |
Scofield S, Murray J A. KNOX gene function in plant stem cell niches. Plant Mol Biol, 2006, 60: 929-946.
doi: 10.1007/s11103-005-4478-y pmid: 16724262 |
[9] |
Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell, 1994, 6: 1877-1887.
doi: 10.1105/tpc.6.12.1877 pmid: 7866030 |
[10] |
Furumizu C, Alvarez J P, Sakakibara K, Bowman J L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet, 2015, 11: e1004980.
doi: 10.1371/journal.pgen.1004980 |
[11] |
Magnani E, Hake S. KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell, 2008, 20: 875-887.
doi: 10.1105/tpc.108.058495 pmid: 18398054 |
[12] |
Bueno N, Alvarez J M, Ordás R J. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. Plant Sci, 2020, 301: 110691.
doi: 10.1016/j.plantsci.2020.110691 |
[13] |
Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 1996, 122: 1567-1575.
doi: 10.1242/dev.122.5.1567 pmid: 8625843 |
[14] |
Chuck G, Lincoln C, Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell, 1996, 8: 1277-1289.
doi: 10.1105/tpc.8.8.1277 pmid: 8776897 |
[15] |
Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967-979.
doi: 10.1046/j.1365-313x.1996.10060967.x pmid: 9011081 |
[16] |
Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66-69.
doi: 10.1038/379066a0 |
[17] |
Rupp H M, Frank M, Werner T, Strnad M, Schmülling T. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J, 1999, 18: 557-563.
pmid: 10417706 |
[18] |
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol, 2005, 15: 1560-1565.
doi: 10.1016/j.cub.2005.07.023 pmid: 16139211 |
[19] |
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 2005, 15: 1566-1571.
doi: 10.1016/j.cub.2005.07.060 |
[20] |
Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J, 2007, 50: 767-781.
pmid: 17461793 |
[21] |
Scofield S, Dewitte W, Murray J A. A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav, 2008, 3: 257-259.
doi: 10.4161/psb.3.4.5194 pmid: 19704647 |
[22] |
Scofield S, Dewitte W, Murray J A. STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1. Plant Signal Behav, 2014, 9: e28934.
doi: 10.4161/psb.28934 |
[23] |
Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V. KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 2006, 18: 1900-1907.
doi: 10.1105/tpc.106.041988 pmid: 16798887 |
[24] |
Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 1996, 84: 735-744.
doi: 10.1016/s0092-8674(00)81051-x pmid: 8625411 |
[25] |
Bharathan G, Goliber T E, Moore C, Kessler S, Pham T, Sinha N R. Homologies in leaf form inferred from KNOXI gene expression during development. Science, 2002, 296: 1858-1860.
doi: 10.1126/science.1070343 pmid: 12052958 |
[26] |
Hay A, Tsiantis M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet, 2006, 38: 942-947.
doi: 10.1038/ng1835 |
[27] |
Nikolov L A, Tsiantis M. Interspecies gene transfer as a method for understanding the genetic basis for evolutionary change: progress, pitfalls, and prospects. Front Plant Sci, 2015, 6: 1135.
doi: 10.3389/fpls.2015.01135 pmid: 26734038 |
[28] | Rast-Somssich M I, Broholm S, Jenkins H, Canales C, Vlad D, Kwantes M, Bilsborough G, Dello Ioio R, Ewing R M, Laufs P, Huijser P, Ohno C, Heisler M G, Hay A, Tsiantis M. Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta. Genes Dev, 2015, 29: 2391-2404. |
[29] |
Das Gupta M, Tsiantis M. Gene networks and the evolution of plant morphology. Curr Opin Plant Biol, 2018, 45: 82-87.
doi: S1369-5266(18)30004-9 pmid: 29885565 |
[30] |
Shu Y, Tao Y, Wang S, Huang L, Yu X, Wang Z, Chen M, Gu W, Ma H. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant Cell Rep, 2015, 34: 1927-1937.
doi: 10.1007/s00299-015-1840-7 pmid: 26205508 |
[31] |
Tao Y, Chen M, Shu Y, Zhu Y, Wang S, Huang L, Yu X, Wang Z, Qian P, Gu W, Ma H. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell Tissue Organ Cult, 2018, 134: 331-344.
doi: 10.1007/s11240-018-1419-4 |
[32] |
Song X, Zhao Y, Wang J, Lu M Z. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. J Exp Bot, 2021, 72: 5625-5637.
doi: 10.1093/jxb/erab201 |
[33] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617. |
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract). | |
[34] |
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[35] |
Cheng F, Wu J, Wang X. Genome triplication drove the diversification of Brassica plants. Hortic Res, 2014, 1: 14024.
doi: 10.1038/hortres.2014.24 |
[36] |
Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis E S, Fujimoto R. Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci, 2021, 11: 619417.
doi: 10.3389/fpls.2020.619417 |
[37] | El-Gebali S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E L L, Hirsh L, Paladin L, Piovesan D, Tosatto S C E, Finn R D. The Pfam protein families database in 2019. Nucleic Acids Res, 2019, 47: D427-D432. |
[38] |
Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200-W204.
doi: 10.1093/nar/gky448 |
[39] |
Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: W327-W331.
doi: 10.1093/nar/gkh454 pmid: 15215404 |
[40] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[41] |
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673 |
[42] |
Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[43] |
Kong W, Ding L, Cheng J, Wang B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice, 2018, 11: 52.
doi: 10.1186/s12284-018-0243-0 |
[44] | Ho C L, Geisler M. Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants (Basel), 2019, 8: 441. |
[45] | Meng L, Liu X, He C, Xu B, Li Y, Hu Y. Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci, 2020, 15: 346-363. |
[46] |
Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629 |
[47] |
Sun R, Qin T, Wall S B, Wang Y, Guo X, Sun J, Liu Y, Wang Q, Zhang B. Genome-wide identification of KNOX transcription factors in cotton and the role of GhKNOX4-A and GhKNOX22-D in response to salt and drought stress. Int J Biol Macromol, 2023, 226: 1248-1260.
doi: 10.1016/j.ijbiomac.2022.11.238 |
[48] |
Han Y, Zhang L, Yan L, Xiong X, Wang W, Zhang X H, Min D H. Genome-wide analysis of TALE superfamily in Triticum aestivum reveals TaKNOX11-A is involved in abiotic stress response. BMC Genomics, 2022, 23: 89.
doi: 10.1186/s12864-022-08324-y |
[1] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[2] | ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361. |
[3] | WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182. |
[4] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
[5] | SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011. |
[6] | TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842. |
[7] | YANG Yi-Dan, HE Du, LIU Jing, ZHANG Yan, CHEN Fei-Zhi, WU Yan-Fei, DU Xue-Zhu. Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum [J]. Acta Agronomica Sinica, 2023, 49(6): 1542-1550. |
[8] | MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725. |
[9] | MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517. |
[10] | LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495. |
[11] | YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210. |
[12] | ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221. |
[13] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[14] | BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027. |
[15] | CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925. |
|