Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2717-2726.doi: 10.3724/SP.J.1006.2023.23080

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and the relative expression pattern of GST31 gene in maize

SUN Lan-Lan(), MA Rong-Hui, XUE Fei, YANG Mu-Han, XU Hong-Le, SU Wang-Cang, LU Chuan-Tao, WU Ren-Hai()   

  1. Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-12-12 Accepted:2023-02-21 Online:2023-10-12 Published:2023-03-02
  • Contact: E-mail: renhai.wu@163.com
  • Supported by:
    Science Foundation of Henan Province, China(212300410171);Independent Topic Selection Project of Henan Academy of Agricultural Sciences(2022ZC36);Joint Fund for Scientific and Technological Research and Development of Henan(222301420109)

Abstract:

To investigate the sequence characteristics of the ZmGST31 gene and the relative expression pattern under herbicide and safener application, ZmGST31 gene was cloned from maize variety ‘Zhengdan 958' by using Reverse Transcription PCR (RT-PCR). A series of bioinformatics analyses were performed subsequently to reveal its nucleotide and coding protein sequence characteristics. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study its relative expression level in root, stem, and leaf with the application of Nicosulfuron (NS) and Isoxadifen-Ethyl (IE) for 24 hours and 48 hours. The results showed that the coding sequence (CDS) of ZmGST31 was 765 bp, which encoded an stable hydrophobic protein with molecular formula of C1276H2021N331O353S4, amino acid size of 254 aa, molecular weight of 27.78 kD, and isoelectric point of 6.60. The protein was mainly localized in the cytoplasm and had no signal peptide and transmembrane structure. Based on the conserved GST_C_Tau and GST_N_Tau structural domain, it was suggested to be a member of the Tau subfamily. ZmGST31 had higher homology with Dichanthelium oligosanthes GSTU17 protein. Protein-protein interaction prediction result showed that ZmGST31 could interact with ten proteins, including two glutathione synthetases and five Glutathione peroxidase proteins. The promoter region of ZmGST31 containd a large number of Cis-acting elements such as light response and hormone response. qRT-PCR results revealed that ZmGST31 was expressed in different parts of maize seedlings, with the highest expression in roots, followed by leaves, and stems. The relative expression of ZmGST31 gene in the aboveground part of maize could be induced by the nicosulfuron and isoxadifen-ethyl, the induction effect was the strongest at 24 hours. In conclusion, the relative expression level of ZmGST31 was regulated by herbicide Nicosulfuron and safener Isoxadifen-Ethyl and might play an important role in herbicide toxicity degradation or safener-mediated herbicide toxicity degradation in maize.

Key words: Zea mays L., ZmGST31, bioinformatics analysis, the relative expression pattern

Fig. 1

Electrophoresis detection of the amplified complementary DNA sequence of ZmGST31 M: DL2000 marker."

Fig. 2

Secondary structure (A) and tertiary structure (B) of ZmGST31 protein Blue h: the alpha helix; Green t: the beta turn; Orange c: the random coil; Red e: the extended strand; B: the tertiary structure analysis."

Fig. 3

Conserved domains of ZmGST31"

Table 1

Motifs identified in ZmGST31 protein"

基序名称
Motif name
基序序列
Motif sequence
E
E-value
宽度
Width
位点
Location
基序名称
Motif name
基序序列
Motif sequence
E
E-value
宽度
Width
位点
Location
Motif 1 RFWAQY
RLCAHP
1.4e+001 6 120-125
218-223
Motif 10 DAIPDA
DAHARA
3.6e+003 6 227-232
112-117
Motif 2 FGGDSVGY
FVEFSVTY
1.3e+002 8 173-180
235-242
Motif 11 LKGTDD
LKGVEF
4.2e+003 6 137-142
48-53
Motif 3 HHGKPIS
SFSKPIN
1.8e+002 7 82-88
244-250
Motif 12 RVIGLW
KIAGVT
8.0e+003 6 29-34
197-202
Motif 4 PWAIRI
PFVIRV
4.1e+002 6 131-136
37-42
Motif 13 EEVVGR
SELLLR
8.0e+003 6 57-62
64-69
Motif 5 GMEQAA
KMSEAA
4.3e+002 6 144-149
22-27
Motif 14 PAFLPV
TVVLPV
9.8e+003 6 106-111
9-14
Motif 6 QYIDEVW
QLLEEAF
1.0e+003 7 95-101
157-163
Motif 15 GWVKAV
LLDKAK
1.9e+004 6 190-195
203-208
Motif 7 MSRLTTT
DIALVSH
2.1e+003 7 1-7
182-188
Motif 16 ELSELG
ESLIIV
2.4e+004 6 15-20
89-94
Motif 8 PNLVAW
SNPVHK
3.8e+002 6 210-215
70-75
Motif 17 SFSKPI
KIPVLL
3.1e+004 6 244-249
76-81
Motif 9 AQLSQG
GQLSAA
3.3e+003 6 164-169
150-155

Fig. 4

Motifs LOGO identified in ZmGST31 protein"

Fig. 5

Protein-protein interaction network of ZmGST31 protein"

Fig. 6

Phylogenetic tree for GST proteins from different plant species"

Table 2

Predicted major cis-acting elements in the promoter of ZmGST31"

元件
Motif
数量
Number
功能
Function
TATA-box 77 核心启动子元件 Core promoter element
CAAT-box 14 核心启动子元件 Core promoter element
CGTCA-motif 8 茉莉酸甲酯响应 MeJA-responsiveness
CAT-box 3 分生组织表达 Meristem expression
ATCT-motif 3 光反应 Light responsiveness
TGA-element 3 生长素响应元件 Auxin-responsive element
ARE 2 厌氧诱导 Anaerobic induction
GA-motif 2 光响应元件 Light responsive element
ABRE 2 脱落酸响应 Abscisic acid responsiveness
GC-motif 1 缺氧特异性诱导 Anoxic specific inducibility
CCAAT-box 1 MYBHv1结合位点 MYBHv1 binding site
GA-motif 1 光反应元件 Light responsive element
AT-rich element 1 富含AT的DNA结合蛋白结合位点 Binding site of AT-rich DNA binding protein
ACE 1 光反应 Light responsiveness
CAT-box 1 顺式作用调控元件 Cis-acting regulatory element
GCN4_motif 1 胚乳发育 Endosperm expression
MSA-like 1 细胞周期调控 Cell cycle regulation

Fig. 7

Relative expression pattern of ZmGST31 genes under different organs and treatments A: the relative expression pattern of ZmGST31 genes in roots, stems, and leaves. B: the relative expression pattern of ZmGST31 at 0, 24, and 48 h after CK treatment. C: the relative expression pattern of ZmGST31 at 24 h after Control (CK), Isoxadifen-Ethyl (IE), Nicosulfuron (NS), and Isoxadifen-Ethyl + Nicosulfuron (IE+NS) treatments. D: the relative expression pattern of ZmGST31 at 48 h after the control (CK), Isoxadifen-Ethyl (IE), Nicosulfuron (NS), and Isoxadifen-Ethyl + Nicosulfuron (IE+NS) treatments. All data are means ± standard deviations (SDs) of three replicates. Different lowercase letters above the columns represent significant difference at P < 0.05."

[1] Dixon D P, Cummins L, Cole D J, Edwards R. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol, 1998, 1: 258-266.
doi: 10.1016/s1369-5266(98)80114-3 pmid: 10066594
[2] Nutricati E, Miceli A, Blando F, De Bellis L. Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Rep, 2006, 25: 997-1005.
doi: 10.1007/s00299-006-0146-1 pmid: 16538523
[3] Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277: 30859-30869.
doi: 10.1074/jbc.M202919200
[4] Edeards R, Dixon D P. Gluthione Transferases and Gamma- glutamyl Transpeptidases. USA: Academic Press, 2005. pp 169-186.
[5] Liu Y J, Han X M, Ren L L, Yang H L, Zeng Q Y. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol, 2013, 161: 773-786.
doi: 10.1104/pp.112.205815 pmid: 23188805
[6] Lallement P A, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol, 2014, 5: 192.
[7] Cottingham C K, Hatzios K K, Meredith S. Influence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid. Zeitchrift Naturforsch C J Biosci, 1998, 53: 973-979.
[8] Shimabukuro R H, Frear D S, Swanson H R, Walsh W C. Glutathione conjugation. Plant Physiol, 1971, 47: 10-14.
pmid: 5543779
[9] 郭玉莲, 陶波, 郑铁军, 李宝英, 翟喜海, 潘亚清. 植物谷胱甘肽S-转移酶(GSTs)及除草剂解毒剂的诱导作用. 东北农业大学学报, 2008, 39(7): 136-139.
Guo Y L, Tao B, Zheng T J, Li B Y, Zhai X H, Pan Y Q. Inducement action of plant GSTs and herbicides antidotes. J Northeast Agric Univ, 2008, 39(7): 136-139 (in Chinese with English abstract).
[10] Timmerman K P. Molecular characterization of corn glutathione S-transferase isozymes involved in herbicide detoxication. Physiol Plant, 1989, 77: 465-471.
[11] Jepson I, Lay V J, Holt D C, Bright S W, Greenland A J. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol Biol, 1994, 26: 1855-1866.
pmid: 7858222
[12] Mueller L A, Goodman C D, Silady R A, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000, 123: 1561-1570.
doi: 10.1104/pp.123.4.1561 pmid: 10938372
[13] Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436
[14] Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621-3634.
doi: 10.1093/jxb/ern217
[15] Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831-843.
doi: 10.1007/s00299-015-1924-4
[16] Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, Zhang Z Y, Wu S J, Chen X S. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40.
doi: 10.1038/s41438-019-0118-6
[17] Chan C, Lam H M. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Physiol, 2014, 55: 570-579.
doi: 10.1093/pcp/pct201 pmid: 24399237
[18] 彭学岗. 玉米田革命性杂草解决方案. 湖北植保. 2014, (3): 63-64.
Peng X G. Revolutionary weed solutions for corn fields. Hubei Plant Prot, 2014, (3): 63-64. (in Chinese)
[19] 浦军, 黄吉美, 扬眉. 不同除草剂对玉米田的防效及产量影响. 特种经济动植物, 2022, 25(10): 36-37.
Pu J, Huang J M, Yang M. Effectiveness of different herbicides on corn fields and yield. Special Econom Anim Plant, 2022, 25(10): 36-37. (in Chinese)
[20] Liu X M, Bi B, Xu X, Li B H, Tian S G, Wang J P, Zhang H, Wang G Q, Han Y J, McElroy J S. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Theor Appl Genet, 2019, 132: 1351-1361.
doi: 10.1007/s00122-019-03282-8
[21] Williams B J, Harvey R G. Effect of nicosulfuron timing on wild-proso millet (Panicum miliaceum) control in sweet corn (Zea mays). Weed Technol, 2000, 14: 377-382.
doi: 10.1614/0890-037X(2000)014[0377:EONTOW]2.0.CO;2
[22] Ferguson J E, Rhodes A M, Dickinson D B. The genetic of sugary enhancer (se), an independent modifier of sweet corn (su). J Hered, 1978, 69: 377-380.
doi: 10.1093/oxfordjournals.jhered.a108976
[23] Davies J, Caseley J C. Herbicide safeners: a review. Pest Sci, 1999, 55: 1043-1058.
doi: 10.1002/(SICI)1096-9063(199911)55:11&lt;&gt;1.0.CO;2-4
[24] Hatzios K K, Burgos N. Metabolism-based herbicide resistance: regulationby safeners. Weed Sci, 2004, 52: 454-467.
doi: 10.1614/P2002-168C
[25] Abu-Qare A W, Duncan H J. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action. Chemosphere, 2002, 48: 965-974.
pmid: 12222792
[26] Sun L L, Wu R H, Su W C, Gao Z G, Lu C T. Herbicide safeners increase waxy maize tolerance to nicosulfuron and affect weed control. J Agric Sci Technol, 2016, 6: 386-393.
[27] Sun L L, Wu R H, Su W C, Gao Z G, Lu C T. Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids. PLoS One, 2017, 12: e0173502.
doi: 10.1371/journal.pone.0173502
[28] Sun L L, Xu H L, Su W C, Xue F, An S H, Lu C T, Wu R H. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. Plant Physiol Biochem, 2018, 129: 101-108.
doi: 10.1016/j.plaphy.2018.05.025
[29] Schulte W, Köcher H. Tembotrione and combination partner isoxadifen-ethyl-mode of herbicidal action. Bayer Crop Sci J, 2009, 62: 35-52.
[30] Ma R H, Tian N, Wang J S, Fan M L, Wang B, Qu P Y, Xu S Y, Xu Y B, Cheng C Z, Lyu P T. Genome-wide identification and characterization of banana Ca2+-ATPase genes and expression analysis under different concentrations of Ca2+ treatments. Int J Mol Sci, 2022, 23: 11914.
doi: 10.3390/ijms231911914
[31] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[32] 姜婷, 苏乔, 安利佳. 多重胁迫下玉米实时定量PCR内参基因的筛选与验证. 植物生理学报, 2015, 51: 1457-1464.
Jiang T, Su Q, An L J. Screening and validation of reference genes of qPCR in maize under multiple stresses. Plant Physiol J, 2015, 51: 1457-1464. (in Chinese with English abstract)
[33] Riechers D E, Kreuz K, Zhang Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol, 2010, 153: 3-13.
doi: 10.1104/pp.110.153601 pmid: 20237021
[34] Delye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci, 2013, 69: 176-187.
doi: 10.1002/ps.3318 pmid: 22614948
[35] Jugulam M, Shyam C. Non-target-site resistance to herbicides: recent developments. Plants, 2019, 8: 417.
doi: 10.3390/plants8100417
[36] Dixon D P, Edwards R. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem, 2009, 284: 21249-21256.
doi: 10.1074/jbc.M109.020107 pmid: 19520850
[37] Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson C G, Weber A P, Olsen L J, Hu J P. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol, 2009, 150: 125-143.
doi: 10.1104/pp.109.137703 pmid: 19329564
[38] Basantani, M K, Srivastava A. Plant glutathione transferases: a decade falls short. Can J Bot, 2007, 85: 443-456.
doi: 10.1139/B07-033
[39] Rossini L, Frova C, Enrico Pè M, Mizzi L, Gorla M S. Alachlor regulation of maize glutathione S-transferase genes. Pest Biochem Physiol, 1998, 60: 205-211.
doi: 10.1006/pest.1998.2338
[40] Andrews C J, Cummins I, Skipsey M, Grundy N M, Jepson I, Townson J, Edwards R. Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.), selective enhancement by herbicides and herbicide safeners. Pest Biochem Phys, 2005, 82: 205-219.
doi: 10.1016/j.pestbp.2004.11.009
[41] Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004, 271: 511-521.
doi: 10.1007/s00438-004-1006-8 pmid: 15069639
[1] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[2] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[3] ZHAO Li-Rong, LI Wen, WANG Li-Min, QI Yan-Ni, LI Wen-Juan, XIE Ya-Ping, DANG Zhao, ZHAO Wei, ZHANG Jian-Ping. Identification and relative expression pattern of PLA1 gene family in flax [J]. Acta Agronomica Sinica, 2023, 49(11): 2949-2965.
[4] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[5] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[6] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[7] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[8] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[9] Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507.
[10] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[11] Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366.
[12] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[13] SU Ya-Chun**,HUANG Long**,LING Hui,WANG Zhu-Qing,LIU Feng,SU Wei-Hua,HUANG Ning,WU Qi-Bin, GAO Shi-Wu,QUE You-Xiong*. Cloning and Expression Analysis of CDK Gene in Sugarcane [J]. Acta Agron Sin, 2017, 43(01): 42-50.
[14] LIU Fang,LIU Rui-Yang,PENG Ye,GUAN Chun-Yun. Cloning and Expression of BnFAD2-C1 Gene Involved in Brassica napus and Analysis of Transcription Regulation Elements [J]. Acta Agron Sin, 2015, 41(11): 1663-1670.
[15] ZHU Xiao-Ling,CHEN Hai-Feng,WANG Cheng,HAO Qing-Nan,CHEN Li-Miao,GUO Dan-Dan,WU Bao-Duo,CHEN Shui-Lian,SHA Ai-Hua,ZHOU Rong,ZHOU Xin-An. Molecular Cloning and Bioinformatics Analysis of K+ Transporter Gene (GmKT12) from Soybean (Glycine max [L.] Merri) [J]. Acta Agron Sin, 2013, 39(09): 1701-1709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .