Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (01): 42-50.doi: 10.3724/SP.J.1006.2017.00042

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of CDK Gene in Sugarcane

SU Ya-Chun**,HUANG Long**,LING Hui,WANG Zhu-Qing,LIU Feng,SU Wei-Hua,HUANG Ning,WU Qi-Bin, GAO Shi-Wu,QUE You-Xiong*   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture / Fujian Agriculture and Forestry University / Sugarcane Research & Development Center, China Agricultural Technology System, Fuzhou 350002, China
  • Received:2015-12-31 Revised:2016-07-11 Online:2017-01-12 Published:2016-07-28
  • Contact: 阙友雄, E-mail: queyouxiong@126.com
  • Supported by:

    This work was supported by Natural Science Foundation of Fujian Province, China (2015J06006), the Program for New Century Excellent Talents in Fujian Province University (JA14095), the Program of Introducing International Super Agricultural Science and Technology (948 Program) (2014-S18), and the China Agriculture Research System (CARS-20).

Abstract:

Plant cyclin-dependent kinases (CDKs) are a specific class of serine/threonine protein kinases, having synergy with cyclins, as an important acting factor in the process of cell regulation. In this study, a unigene from previous transcriptome data of sugarcane in response to sorghum mosaic virus (SrMV) infection, which exhibited highly homologous to Sorghum biocolor CDK sequence (GenBank Acc No. XP_002466536.1), was validated by RT-PCR and named as ScCDK (GenBank Acc No. KR258796) with a full-length cDNA of 1799 bp. ScCDK contained a complete open reading frame (65–1603 bp) encoding 512 amino acids, and a typical conservative CDK domain, such as ATP binding site, polypeptide substrate binding site and activation loop. Furthermore, based on the bioinformatics prediction, this soluble protein, which was most probably involved in intermediary metabolism, was located in cell nucleus and had no signal peptide but had more random coil upon secondary structure. Real-time quantitative PCR (RT-qPCR) analysis revealed that the expression of this target gene was tissue-specific, with the highest transcript level in bud, followed by the expression in stem pith, root, leaf sheath and epidermis. Besides, its expression could be up-regulated by the treatments of PEG, NaCl and ABA, with nearly 1.9-fold up-regulation of ScCDK transcript under the stress of ABA, compared with the control. These results suggest that the ScCDK may relate to the response of sugarcane to drought and osmotic stresses, meanwhile, be induced by hormones and involved in cell cycle division.

Key words: Sugarcane, CDK, Homology cloning, Bioinformatics analysis, Real-time PCR

[1]Ukomadu C, Chem J B. Cyclin-dependent Kinases. Germany: Springer Berlin Heidelberg, 2004. pp 279
[2]张玉霞, 喻伦银, 刘铭球. 细胞周期调控研究进展. 国际遗传学杂志, 2001, 24: 262–266
Zhang Y X, Yu L Y, Liu M Q. The progress of cell cycle regulation. Int J Genet, 2001, 24: 262–266 (in Chinese)
[3]高燕, 林莉萍, 丁健. 细胞周期调控的研究进展. 生命科学, 2005, 17: 318–322
Gao Y, Lin L P, Ding J. A review: cell cycle regulation. Chinese Bull Life Sci, 2005, 17: 318–322 (in Chinese with English abstract)
[4]李峰, 陈临溪. 细胞周期蛋白D与细胞周期调控研究进展. 国外医学: 生理、病理科学与临床分册, 2005, 25(3): 270–273
Li F, Chen L X. Plant cyclin-dependent kinases and progress of cell cycle regulation. Foreign Med Sci (Pathophysiol Clin Med), 2005, 25: 270–273 (in Chinese)
[5]卢梦玲, 闫超, 赖多, 徐汉虹. Cyclin D1与细胞周期调控. 生物技术通报, 2011, 27(10): 55–59
Lu M L, Yan C, Lai D, Xu H H. Cyclin D1 and cell cycle regulation. Biotechnol Bull, 2011, 27(10):55–59 (in Chinese with English abstract)
[6]Hoffmann I. Cyclin-dependent Protein Kinases and the Regulation of the Eukaryotic Cell Cycle. Weinheim: Verlag Chemie, 1996. pp 179–201
[7]王新超, 马春雷, 杨亚军, 金基强, 马建强, 曹红利. 茶树细胞周期蛋白依赖激酶(CsCDK)基因cDNA全长克隆与分析. 园艺学报, 2012, 39: 333–342
Wang X C, Ma C L, Yang Y J, Jin J Q, Ma J Q, Cao H L. cDNA cloning and expression analysis of cyclin-dependent kinase (CsCDK) gene in tea plant. Acta Hort Sin, 2012, 39: 333–342 (in Chinese with English abstract)
[8]Serrano M, Hannon G J, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366: 704–707
[9]Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009, 9: 153–166
[10]Zwijsen R M, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides R J. CDK-independent activation of estrogen receptor by cyclin D1. Cell, 1997, 88: 405–415
[11]Malumbres M. Cyclin-dependent kinases. Genome Biol, 2014, 15: 122
[12]Harper J W, Adams P D. Cyclin-dependent kinases. Chem Rev, 2001, 101: 2511–2526
[13]Nigg E A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Curr Opin Cell Biol, 1995, 17: 471–480
[14]Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem, 1992, 61, 441–470
[15]Nasmyth K. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr Opin Cell Biol, 1993, 5, 166–179
[16]李海波, 王小兵, 夏铭, 吴平. 不同氮、磷状况对水稻根生长及细胞周期蛋白激酶(CDKs)基因表达的影响. 植物生理与分子生物学学报, 2002, 28: 59–64
Li H B, Wang X B, Xia M, Wu P. The effects of phosphorus and nitrate status on root growth and expression of cyclin-dependent kinases (CDKs) in rice. J Plant Physiol Mol Biol, 2002, 28: 59–64 (in Chinese)
[17]赵莉娜. 拟南芥CDKC2基因在植物耐旱及叶片细胞分裂过程中相关功能的研究. 中国科学院研究生院硕士学位论文, 北京, 2010
Zhao L N. Study on the Correlation Functions of Arabidopsis thaliana CDKC2 Gene in Plant Drought Tolerance and Leaf Cell Division. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2010 (in Chinese with English abstract)
[18]崔美. 苹果周期蛋白依赖性蛋白激酶基因MdCDKB1的克隆及表达分析. 山东农业大学硕士学位论文, 山东泰安, 2012
Cui M. Cloning and Expressing Analysis of Cyclin-Dependent Kinase B1 in Malus X domestica Borkh. MS Thesis of Shandong Agricultural University, Tai’an, China, 2012
[19]郭晋隆, 李国印, 苏亚春, 王恒波, 阙友雄, 徐景升, 许莉萍. 甘蔗R2R3-MYB类似基因Sc2RMyb1的克隆及表达特性分析. 农业生物技术学报, 2012, 20: 1009–1017
Guo J L, Li G Y, Su Y C, Wang H B, Que Y X, Xu J S, Xu L P. Sugarcane R2R3-MYB similar gene cloning and expression of Sc2RMyb1 characteristics analysis. J Agric Biotechnol, 2012, 20: 1009–1017 (in Chinese with English abstract)
[20]黄珑, 苏炜华, 张玉叶, 黄宁, 凌辉, 肖新换, 阙友雄, 陈如凯. 甘蔗CIPK基因的同源克隆与表达. 作物学报, 2015, 41: 499–506
Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K. Cloning and expression analysis of CIPK gene in sugarcane. Acta Agron Sin, 2015, 41: 499–506 (in Chinese with English abstract)
[21]吴才文, 范源洪, 陈学宽, 刘家勇, 赵俊, 赵培方, 夏红明, 杨昆. 云南抗旱甘蔗品种的选育及效果. 中国糖料, 2012, (4): 37–39
Wu C W, Fan Y H, Chen X K, Liu J Y, Zhao J, Zhao P F, Xia H M, Yang K. Breeding of drought-resistant sugarcane varieties in Yunnan. Sugar Crop China. 2012, 4: 37–39 (in Chinese with English abstract)
[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408
[23]Sherr C J, Roberts J M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 2004, 18: 2699–2711
[24]Mironov V, Veylder LD, Montagu MV, Inzé D. Cyclin-dependent kinases and cell division in plants-the nexus. Plant Cell, 1999, 11: 509–522
[25]赵臻, 邱凯, 蒯本科. 人工microRNA干扰拟南芥AtCDKC;1和AtCDKC;2基因表达的初步研究. 植物生理学报, 2010, 46: 693–700
Zhao Z, Qiu K, Kuai B K. A preliminary analysis of artificial microRNAs-mediated interference of AtCDKC;1 and AtCDKC;2 expression in Arabidosis. Plant Physiol J, 2010, 46: 693–700 (in Chinese with English abstract)
[26]吴向伟, 王根洪, 聂梦云, 熊海军, 谢小东, 夏庆友. 烟草周期蛋白依赖性激酶基因NtCDK8的克隆及生物信息学分析. 烟草科技, 2014, 47(10): 71–74
Wu X W, Wang G H, Nie M Y, Xiong H J, Xie X D, Xia Q Y. Cloning and bioinformatics analysis of cyclin-dependent protein kinase gene NtCDK8 from Nicotiana tabacum. Tob Sci Tech, 2014, 47(10): 71–74 (in Chinese with English abstract)
[27]Mellerowicz E, Riding R, Little C. Genomic variability in the vascular cambium of Abies balsamea. Can J Bot, 1989, 4: 990–996
[28]李英, 喻景权, 朱祝军, 陈暄, 胡文海. CPPU对瓠瓜单性结实的诱导作用及对细胞分裂和内源激素水平的影响. 植物生理学报, 2001, 27: 167–172
Li Y, Yu J Q, Zhu Z J, Chen X, Hu W H. Fruit growth, cell division and endogenous hormones level in parthencarpic fruit formed by CPPU induction in Lagenaria leucantha. Plant Physiol J, 2001, 27: 167–172 (in Chinese)
[29]闫树堂, 徐继忠. 不同矮化中间砧对红富士苹果果实内源激素、多胺与细胞分裂的影响. 园艺学报, 2005, 32: 31–33
Yan S T, Xu J Z. The effects of different dwarfing interstocks on the endogenous hormones polyamines and cell division in fruits of red Fuji apple. Acta Hort Sin, 2005, 32: 31–33 (in Chinese with English abstract)
[30]朱宏, 张忠恒. 小麦花粉培养中蔗糖浓度外源激素低温前处理对启动细胞分裂的作用. 哈尔滨师范大学(自然科学学报), 2002, 18(3): 91–95
Zhu H, Zhang Z H. An analytic study of the sucrouse concentrations, the exogenous hormones and the low temperature pretreatment in fluencing the initiation of cell division in wheat pollen culture. Nat Sci J Harbin Norm Univ, 2002, 18(3): 91–95 (in Chinese)
[31]吴向伟. 烟草细胞周期蛋白依赖性激酶NtCDK8基因的克隆及功能分析. 西南大学硕士学位论文, 重庆, 2015
Wu X W. Cloning and Functional Analysis of Cyclin-Dependent Protein Kinases, NtCDK8 from Nicotiana tobacco. MS Thesis of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract)
[32]Wells A D. Cyclin-dependent kinases: Molecular switches controlling energy and potential therapeutic targets for tolerance. Semin Immunol, 2007, 19: 173–179
[33]Zhu Y F, Schluttenhoffer C M, Wang P C, Fu F Y, Thimmapuram J, Zhu J K, Lee S Y, Yun D J, Mengiste T. Cyclin-dependent kinase8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. Plant Cell, 2014, 26: 4149–4170

[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[5] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[6] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[7] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[8] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[9] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[10] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[11] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[12] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[13] LI Jun,LI Liang,LI Xia-Ying,SONG Gui-Wen,SHEN Ping,ZHANG Li,ZHAI Shan-Shan,LIU Fang-Fang,WU Gang,ZHANG Xiu-Jie,WU Yu-Hua. Development of genetically modified maize MIR604 matrix reference materials [J]. Acta Agronomica Sinica, 2020, 46(4): 473-483.
[14] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[15] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!