ZHAO Hui-Xia1,**,GUO Yan-Li2,**,ZHENG Yu-Ling1,HE Ling1,CHEN Rui1,WANG Shan-Shan1,ZENG Chang-Li1,ZOU Jun3,4,SHEN Jin-Xiong3,4,FU Ting-Dong3,LIU Xiao-Yun1,*,WAN He-Ping1,*
[1] Parihar P, Singh S, Singh R, Singh V P, Prasad S M. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int, 2015, 22: 4056–4075. [2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681. [3] Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot, 2013, 112: 1209–1221. [4] Jin H, Kim H R, Plaha P, Liu S K, Park J Y, Piao Y Z, Yang Z H, Jiang G B, Kwak S S, An G, et al. Expression profiling of the genes induced by Na₂CO₃ and NaCl stresses in leaves and roots of Leymus chinensis. Plant Sci, 2008, 175: 784–792. [5] Wang X P, Jiang P, Ma Y, Geng S J, Wang S C, Shi D C. Physiological strategies of sunflower exposed to salt or alkali stresses: restriction of ion transport in the cotyledon node zone and solute accumulation. Agron J, 2015, 107: 2181–2192.
[6] 李子英, 丛日春, 杨庆山, 周健. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响. 生态学报, 2017, 37: 8511–8517. [7] Feng N J, Yu M L, Li Y, Jin D, Zheng D F. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol Environ Saf, 2021, 220: 112369.
[8] 张会慧, 龙静泓, 王均睿, 吴绪叶, 马松良, 宁强, 许楠. 不同种类盐胁迫对高粱幼苗生长及叶片光合机构功能的影响. 生态学杂志, 2019, 38: 161–172. [9] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88–95. [10] Vestin J L K, Nambu K, van Hees P A W, Bylund D, Lundström U S. The influence of alkaline and non-alkaline parent material on soil chemistry. Geoderma, 2006, 135: 97–106. [11] Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010, 48: 127–134. [12] Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217: 523–539. [13] Wang L X, Fang C, Wang K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. J Plant Nutr, 2015, 38: 526–540. [14] Gong B, Li X, VandenLangenberg K M, Wen D, Sun S S, Wei M, Li Y, Yang F J, Shi Q H, Wang X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J, 2014, 12: 694–708. [15] Wang X, Ajab Z, Liu C X, Hu S M, Liu J L, Guan Q J. Overexpression of transcription factor SlWRKY28 improved the tolerance of Populus davidiana × P. bolleana to alkaline salt stress. BMC Genet, 2020, 21: 103. [16] Zhao C Y, Pan X W, Yu Y, Zhu Y M, Kong F J, Sun X, Wang F F. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean. Mol Breed, 2020, 40: 33. [17] Cui M H, Li Y P, Li J H, Yin F X, Chen X Y, Qin L M, Wei L, Xia G M, Liu S W. Ca²⁺-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H⁺-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat. Mol Plant, 2023, 16: 571–587. [18] Zhang H L, Yu F F, Xie P, Sun S Y, Qiao X H, Tang S Y, Chen C X, Yang S, Mei C, Yang D K, et al. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379: eade8416. [19] Guo S Q, Chen Y X, Ju Y L, Pan C Y, Shan J X, Ye W W, Dong N Q, Kan Y, Yang Y B, Zhao H Y, et al. Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield. Nature, 2025, 639: 162–171. [20] Zhang G F, Peng Y, Zhou J Z, Tan Z D, Jin C, Fang S, Zhong S Z, Jin C W, Wang R Z, Wen X L, et al. Genome-wide association studies of salt-alkali tolerance at seedling and mature stages in Brassica napus. Front Plant Sci, 2022, 13: 857149. [21] Wang W C, Pang J Y, Zhang F H, Sun L P, Yang L, Zhao Y G, Yang Y, Wang Y J, Siddique K H M. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.). Plant Physiol Biochem, 2021, 166: 605–620. [22] Xu Y, Tao S X, Zhu Y L, Zhang Q, Li P, Wang H, Zhang Y, Bakirov A, Cao H M, Qin M F, et al. Identification of alkaline salt tolerance genes in Brassica napus L. by transcriptome analysis. Genes, 2022, 13: 1493. [23] Ma L, Lian Y T, Li S Y, Fahim A M, Hou X F, Liu L J, Pu Y Y, Yang G, Wang W T, Wu J Y, et al. Integrated transcriptome and metabolome analysis revealed molecular regulatory mechanism of saline-alkali stress tolerance and identified bHLH142 in winter rapeseed (Brassica rapa). Int J Biol Macromol, 2025, 295: 139542. [24] Navarro-León E, Grazioso A, Atero-Calvo S, Rios J J, Esposito S, Blasco B. Evaluation of the alkalinity stress tolerance of three Brassica rapa CAX1 TILLING mutants. Plant Physiol Biochem, 2023, 198: 107712.
[25] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1–8. [26] Zeng L, Cai J S, Li J J, Lu G Y, Li C S, Fu G P, Zhang X K, Ma H Q, Liu Q Y, Zou X L, et al. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integr Agric, 2018, 17: 328–335. [27] Wan H P, Qian J L, Zhang H, Lu H C, Li O Q, Li R H, Yu Y, Wen J, Zhao L, Yi B, et al. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of salt tolerance of Huayouza 62, an elite cultivar in rapeseed (Brassica napus L.). Int J Mol Sci, 2022, 23: 1279. [28] Chen J D, Zhang H, Tong J Q, Liu C Y, Ran J H, Tang J, Liu J Y, Wen J, Zeng C L, Wan H P, et al. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress. Euphytica, 2021, 217: 197. [29] Patel R K, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One, 2012, 7: e30619. [30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915. [31] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290–295. [32] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. [33] Yu G C, Wang L G, Han Y Y, He Q Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284–287. [34] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) Method. Methods, 2001, 25: 402–408. [36] He Y X, Yang X D, Xu C, Guo D Q, Niu L, Wang Y, Li J W, Yan F, Wang Q Y. Overexpression of a novel transcriptional repressor GmMYB3a negatively regulates salt-alkali tolerance and stress-related genes in soybean. Biochem Biophys Res Commun, 2018, 498: 586–591. [37] Wang G D, Shen W Z, Zhang Z N, Guo S, Hu J C, Feng R Q, Zhao Q, Du J D, Du Y L. The effect of neutral salt and alkaline stress with the same Na+ concentration on root growth of soybean (Glycine max (L.) merr.) seedlings. Agronomy, 2022, 12: 2708. [38] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建. 作物学报, 2024, 50 (1): 237–250. Yang C, Wang L, Quan C T, Yu L Q, Dai C, Guo L, Fu T D, Ma C Z. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. Acta Agron Sin, 2024, 50(1): 237–250 (in Chinese with English abstract). [39] Wan H P, Wei Y K, Qian J L, Gao Y L, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 2018, 214: 190. [40] Javid M, Ford R, Nicolas M E. Tolerance responses of Brassica juncea to salinity, alkalinity and alkaline salinity. Funct Plant Biol, 2012, 39: 699–707. [41] Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W Y, Leung H Y, Hattori K, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J, 2005, 44: 928–938. [42] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190. [43] Rathert G. Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant Soil, 1983, 73: 247–256. [44] Maas E V, Grieve C M. Sodium-induced calcium deficiency in salt-stressed corn. Plant Cell Environ, 1987, 10: 559–564. [45] Muhammed S, Akbar M, Neue H U. Effect of Na/Ca and Na/K ratios in saline culture solution on the growth and mineral nutrition of rice (Oryza sativa L.). Plant Soil, 1987, 104: 57–62. [46] Ali R, Zielinski R E, Berkowitz G A. Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot, 2006, 57: 125–138. [47] Maathuis F J M, Filatov V, Herzyk P, Krijger G C, Axelsen K B, Chen S X, Green B J, Li Y, Madagan K L, Sánchez-Fernández R, et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J, 2003, 35: 675–692. [48] Yong H Y, Zou Z W, Kok E P, Kwan B H, Chow K, Nasu S, Nanzyo M, Kitashiba H, Nishio T. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int, 2014, 2014: 467395. [49] Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J B, Sentenac H. Identification and disruption of a plant shaker-like outward channel involved in K⁺ release into the xylem sap. Cell, 1998, 94: 647–655. [50] Maathuis F J M. The role of monovalent cation transporters in plant responses to salinity. J Exp Bot, 2006, 57: 1137–1147. [51] Shabala S, Cuin T A. Potassium transport and plant salt tolerance. Physiol Plant, 2008, 133: 651–669. [52] Demidchik V, Cuin T A, Svistunenko D, Smith S J, Miller A J, Shabala S, Sokolik A, Yurin V. Arabidopsis root K⁺-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci, 2010, 123: 1468–1479. [53] Chakraborty K, Bose J, Shabala L, Shabala S. Difference in root K⁺ retention ability and reduced sensitivity of K⁺-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot, 2016, 67: 4611–4625. [54] Fang S M, Hou X, Liang X L. Response mechanisms of plants under saline-alkali stress. Front Plant Sci, 2021, 12: 667458. [55] Macovei A, Tuteja N. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 183. [56] Zeng X Q, Chow W S, Su L J, Peng X X, Peng C L. Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiol Plant, 2010, 138: 215–225. [57] Hatier J B, Gould K S. Foliar anthocyanins as modulators of stress signals. J Theor Biol, 2008, 253: 625–627. [58] Van Oosten M J, Sharkhuu A, Batelli G, Bressan R A, Maggio A. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol Biol, 2013, 83: 405–415. |
[1] | WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229. |
[2] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
[3] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[4] | XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156. |
[5] | CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146. |
[6] | ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956. |
[7] | WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685. |
[8] | LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353. |
[9] | FAN Hui-Ling, BAI Sheng-Wen, LU Yan, PENG Xiao-Xing, ZHOU Xian-Li, ZHANG Hong-Yan, TENG Chang-Cai, WU Xue-Xia, LIU Yu-Jiao. Identification and comprehensive evaluation of salt-alkali tolerance throughout the growth period of 155 faba bean germplasms [J]. Acta Agronomica Sinica, 2024, 50(12): 3035-3045. |
[10] | ZHANG Jin-Hui, XIAO Zi-Yi, LI Xu-Hua, ZHANG Ming, JIA Chun-Lan, PAN Zhen-Yuan, QIU Fa-Zhan. Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2 [J]. Acta Agronomica Sinica, 2024, 50(12): 3144-3154. |
[11] | GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236. |
[12] | WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349. |
[13] | WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868. |
[14] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[15] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
|