Yang Rui1,Chen Jing-Dong1,Huang Ying1,Zhang Xue-Kun1,2,Zhou Deng-Wen3,Liu Qing-Yun4,Xu Jing-Song1,Xie Ling-Li1,*,Xu Ben-Bo1,*
| [1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613–617. Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613–617 (in Chinese with English abstract). [2] 何永强, 张金盔, 徐劲松, 等. 14-羟基芸苔素甾醇生长调节剂对油菜生长和产量的影响. 中国农业科学, 2024, 57: 1444–1454. He Y Q, Zhang J K, Xu J S, et al. Effect of 14-hydroxylated brassinosteroids growth regulator on growth and yield of rapeseed. Sci Agric Sin, 2024, 57: 1444–1454 (in Chinese with English abstract). [3] 宁宁, 莫娇, 胡冰, 等. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315–3327. Ning N, Mo J, Hu B, et al. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315–3327 (in Chinese with English abstract). [4] Yang X Q, Liu Y, Bezama A, et al. Two birds with one stone: a combined environmental and economic performance assessment of rapeseed-based biodiesel production. GCB Bioenergy, 2022, 14: 215–241. [5] 李谷成, 牛秋纯, 冷博峰, 等. 新时代十年: 我国油菜产业发展与路径选择. 中国油料作物学报, 2024, 46: 228–235. Li G C, Niu Q C, Leng B F, et al. The decade of rapeseed industry in the new era: development and its path choice. Chin J Oil Crop Sci, 2024, 46: 228–235 (in Chinese with English abstract). [6] Huang J D, Cao X Y, Kuai J, et al. Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Res, 2023, 293: 108842. [7] Zandberg J D, Fernandez C T, Danilevicz M F, et al. The global assessment of oilseed Brassica crop species yield, yield stability and the underlying genetics. Plants, 2022, 11: 2740. [8] Kirkegaard J A, Lilley J M, Berry P M, et al. Crop physiology case histories for major crops. Massachusetts: Academic Press, 2021. pp 518–549. [9] 郑娟, 黄凰, 廖宜涛, 等. 长江中游地区油菜生产全程机械化技术进展与建议. 中国油料作物学报, 2024, 46: 245–259. Zheng J, Huang H, Liao Y T, et al. Progress and suggestions on full mechanization of rapeseed production in the middle reaches of the Yangtze River. Chin J Oil Crop Sci, 2024, 46: 245–259 (in Chinese with English abstract). [10] 左萃宸, 曾涛, 何永强, 等. 长江中游南部油菜产区低产原因及育种对策. 中国油料作物学报, 2024, 46: 969–976. Zuo C C, Zeng T, He Y Q, et al. Causes of low yield and breeding countermeasures in rapeseed producing areas in the middle reaches of the Yangtze River. Chin J Oil Crop Sci, 2024, 46: 969–976 (in Chinese with English abstract). [11] 普多旺, 拉瓜登顿, 盛敏, 等. 中国北纬30°地面太阳光谱观测. 光谱学与光谱分析, 2023, 43: 1881–1887. Pu D W, Lagua D D, Sheng M, et al. Surface solar spectral observation along 30°N in China. Spectrosc Spect Anal, 2023, 43: 1881–1887 (in Chinese with English abstract). [12] 陈晓阳. 北纬30°—优质茶叶产区带. 国土资源导刊, 2005, 2(3): 56–57. Chen X Y. 30° north latitude-high quality tea producing area. Land & resources Her, 2005, 2(3): 56–57 (in Chinese with English abstract). [13] Zhu C W, Zhou X J, Zhao P, et al. Onset of East Asian subtropical summer monsoon and rainy season in China. Sci China Earth Sci, 2011, 54: 1845–1853. [14] Zhou B T, Wang H J. Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley. J Geophys Res Atmos, 2006, 111: 2005JD007006. [15] Day J A, Fung I, Liu W H. Changing character of rainfall in Eastern China, 1951–2007. Proc Natl Acad Sci USA, 2018, 115: 2016–2021. [16] LinHo L H, Huang X L, Lau N C. Winter-to-spring transition in east Asia: a planetary-scale perspective of the South China spring rain onset. J Clim, 2008, 21: 3081–3096. [17] Gao H, Yang S, Kumar A, et al. Variations of the East Asian Mei-yu and simulation and prediction by the NCEP climate forecast system. J Clim, 2011, 24: 94–108. [18] Gu W, Wang L, Hu Z Z, et al. Interannual variations of the first rainy season precipitation over South China. J Clim, 2018, 31: 623–640. [19] Yao X P, Ma J L, Zhang D L, et al. A 33-yr Meiyu-season climatology of shear lines over the Yangtze-Huai River Basin in Eastern China. J Appl Meteor Climatol, 2020, 59: 1125–1137. [20] Hu Y J, Zhu X Y, Ha Y, et al. Another source of error in simulating or predicting Meiyu: a case study. Theor Appl Climatol, 2024, 155: 9833–9846. [21] Wu W, Shah F R, Ma B L. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop Environ, 2022, 1: 133–144. [22] Raza A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul, 2021, 40: 1368–1388. [23] 谢伶俐, 韦丁一, 章子爽, 等. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系. 中国农业科学, 2022, 55: 4793–4807. Xie L L, Wei D Y, Zhang Z S, et al. Dynamic changes of gibberellin content during the development and its relationship with yield of Brassica napus L. Sci Agric Sin, 2022, 55: 4793–4807 (in Chinese with English abstract). [24] 高少凡, 韦丁一, 何庆彪, 等. 甘蓝型油菜苗期赤霉素含量及其代谢关键基因转录特性. 中国油料作物学报, 2024, 46: 1240–1250. Gao S F, Wei D Y, He Q B, et al. Gibberellin metabolism level and key gene transcription characteristics at seedling stage of Brassica napus L. Chin J Oil Crop Sci, 2024, 46: 1240–1250 (in Chinese with English abstract). [25] Jaime R, Alcántara J M, Manzaneda A J, et al. Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLoS One, 2018, 13: e0207124. [26] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894–903. Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894–903 (in Chinese with English abstract). [27] 张学昆, 张春雷, 廖星, 等. 2008年长江流域油菜低温冻害调查分析. 中国油料作物学报, 2008, 30: 122–126. Zhang X K, Zhang C L, Liao X, et al. Investigation on 2008'low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci, 2008, 30: 122–126 (in Chinese with English abstract). [28] Kutcher H R, Warland J S, Brandt S A. Temperature and precipitation effects on canola yields in Saskatchewan, Canada. Agric For Meteor, 2010, 150: 161–165. [29] 何泽威, 丁晓雨, 徐劲松, 等. 播种期降水偏多对油菜重要农艺性状和产量的影响. 中国油料作物学报, 2024, 46: 92–101. He Z W, Ding X Y, Xu J S, et al. Effect of autumn continuously rainy weather which cause waterlogging in rapeseed (Brassica napus L.) traits and yield. Chin J Oil Crop Sci, 2024, 46: 92–101 (in Chinese with English abstract). [30] 陈于婷, 丁晓雨, 许本波, 等. 气候变暖对冬油菜产量、品质及重要农艺性状的影响. 作物学报, 2025, 51: 516–525. Chen Y T, Ding X Y, Xu B B, et al. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.). Acta Agron Sin, 2025, 51: 516–525 (in Chinese with English abstract). [31] Gopal A, Veerasamy R, Dhashnamurthi V, et al. Enhancing drought tolerance in okra through melatonin application: a comprehensive study of physiological, biochemical and metabolic responses. Not Bot Horti Agrobo, 2024, 52: 14055. [32] Guntukula R. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J Public Aff, 2020, 20: e2040. [33] 刘海卿, 孙万仓, 刘自刚, 等. 北方不同生态区白菜型冬油菜农艺性状变化分析. 中国生态农业学报, 2015, 23: 694–704. Liu H Q, Sun W C, Liu Z G, et al. Analysis of agronomic traits of winter rapeseed (Brassica campestris L.) in different ecological areas of North China. Chin J Eco-Agric, 2015, 23: 694–704 (in Chinese with English abstract). [34] Huang J, Zhou L M, Zhang F M, et al. Responses of yield fluctuation of winter oilseed rape to climate anomalies in South China at provincial scale. Int J Plant Prod, 2020, 14: 521–530. [35] Dron N, Simpfendorfer S, Sutton T, et al. Cause of death: Phytophthora or flood? effects of waterlogging on Phytophthora medicaginis and resistance of chickpea (Cicer arietinum). Agronomy, 2022, 12: 89. [36] Liang J P, Li H, Li N, et al. Analysis and prediction of the impact of socio-economic and meteorological factors on rapeseed yield based on machine learning. Agronomy, 2023, 13: 1867. [37] Butkeviciene L M, Kriauciuniene Z, Pupaliene R, et al. Influence of sowing time on yield and yield components of spring rapeseed in Lithuania. Agronomy, 2021, 11: 2170. [38] Wang X L, Li L, Wang C Y, et al. Micro-ridge-furrow planting increases rapeseed yield and resource utilization efficiency through optimizing field microenvironment and light-nitrogen matching. Crop J, 2025, 13: 587–596. [39] 蒙祖庆, 宋丰萍, 霍嘉慧, 等. 高原气候下西藏不同熟期甘蓝型春油菜光温资源利用效率比较分析. 中国油料作物学报, 2023, 45: 63–71. Meng Z Q, Song F P, Huo J H, et al. Comparative analysis on light-temperature resource use efficiency of spring rapeseed (Brassica napus) differing in maturity in China Tibet under plateau climate. Chin J Oil Crop Sci, 2023, 45: 63–71 (in Chinese with English abstract). [40] Saroj R, Soumya S L, Singh S, et al. Unraveling the relationship between seed yield and yield-related traits in a diversity panel of Brassica juncea using multi-traits mixed model. Front Plant Sci, 2021, 12: 651936. [41] Chang T, Wu J J, Wu X P, et al. Comprehensive evaluation of high-oleic rapeseed (Brassica napus) based on quality, resistance, and yield traits: a new method for rapid identification of high-oleic acid rapeseed germplasm. PLoS One, 2022, 17: e0272798. [42] Radic V, Balalic I, Krstic M, et al. Correlation and path analysis of yield and yield components in winter rapeseed. Genetika, 2021, 53: 157–166. [43] Pal L, Sandhu S K, Bhatia D, Sethi S. Genome-wide association study for candidate genes controlling seed yield and its components in rapeseed (Brassica napus subsp. napus). Physiol Mol Biol Plants, 2021, 27: 1933–1951. [44] Sadat Hashemi P, Mohammadi A, Alizadeh B, et al. Simultaneous selection of oil yield and other agronomic characteristics in winter rapeseed hybrids. Jcb, 2023, 15: 60–68. [45] Gholizadeh A, Oghan H A, Alizadeh B, et al. Phenotyping new rapeseed lines based on multiple traits: Application of GT and GYT biplot analyses. Food Sci Nutr, 2023, 11: 853–862. [46] Li Q, Luo T, Cheng T, et al. Evaluation and screening of rapeseed varieties (Brassica napus L.) suitable for mechanized harvesting with high yield and quality. Agronomy, 2023, 13: 795. [47] Liu S Y, Raman H, Xiang Y, et al. De novo design of future rapeseed crops: Challenges and opportunities. Crop J, 2022, 10: 587–596. [48] Alizadeh B, Rezaizad A, Hamedani M Y, et al. Genotype x environment interactions and simultaneous selection for high seed yield and stability in winter rapeseed (Brassica napus) multi-environment trials. Agric Res, 2022, 11: 185–196. [49] Habib Tabar Shiadeh S S, Feizabadi Y, Kosari-Moghaddam A. To what extent cultivar selection can affect the environmental impact of rapeseed production Environ Sustain Indic, 2025, 26: 100619.
|
| [1] | FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151. |
| [2] | LI Shi-Peng, CHEN Cai-Wu, ZHANG Jing, LYU Tian, FU Ting-Dong, YI Bin. Identification of fertility levels and quantification of the temperature-fertility relationship in rapeseed pol TCMS lines using an improved U-Net++ model [J]. Acta Agronomica Sinica, 2025, 51(6): 1423-1434. |
| [3] | CUI Xin, GU He-He, SONG Yi, ZHANG Zhe, LIU Shi-Shi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(6): 1629-1642. |
| [4] | WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229. |
| [5] | SHE Hui-Jie, SUN Ming-Zhu, LI Shi-Gang, WANG Dong-Xian, CHENG Tai, JIANG Bo, CHEN Ai-Wu, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of coating with fulvic acid and alginate oligosaccharide on emergence and yield of late-sown rapeseed [J]. Acta Agronomica Sinica, 2025, 51(4): 1022-1036. |
| [6] | SU Qing-Fang, SUN Xiao-Zhao, LIN Yang, FU Yan-Ping, CHENG Jia-Sen, XIE Jia-Tao, JIANG Dao-Hong, CHEN Tao. Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 358-369. |
| [7] | QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446. |
| [8] | WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458. |
| [9] | QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502. |
| [10] | CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525. |
| [11] | JIANG Ang-Chen, LI Yan, LI Yu-Chen, ZHANG Jing, CHEN Ai-Ping. Comprehensive evaluation of agronomic traits and seed yield of 21 Bromus inermis germplasm and screening of superior germplasm [J]. Acta Agronomica Sinica, 2025, 51(11): 2958-2970. |
| [12] | GUI Ling-Xing, LING Xi-Tie, TANG Zhao-Cheng, LUO Wen-Zhen, ZHU Pan-Zhen, QIU Ze-Yu, ZHANG Bao-Long. Identification and agronomic characterization of imazamox-resistant dwarf mutants in Ningmai 36 [J]. Acta Agronomica Sinica, 2025, 51(11): 2923-2932. |
| [13] | JIANG Xiao, ZHAO Jian-Xin, BI Jing-Nan, XU Jing, YIN Xiang-Zhen, ZHAO Xu-Hong, PAN Li-Juan, CHEN Na, Ma Jun-Qing, HAN Peng, YANG Zhen, CHI Xiao-Yuan. Effects of major geographic and climatic factors on agronomic traits and quality of peanut in the main production areas of northern China [J]. Acta Agronomica Sinica, 2025, 51(10): 2805-2820. |
| [14] | YANG Shu-Ting, HE Sheng-Hao, ZHAO Bi-Yun, HE Jia, LIU Jing, YANG Meng-Yao, CHEN Ai-Wu, WANG Jing, ZHAO Jie, KUAI Jie, WANG Bo, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of spraying exogenous substances at seedling stage on cold resistance and yield of late-seeded rapeseed during overwintering [J]. Acta Agronomica Sinica, 2025, 51(10): 2788-2804. |
| [15] | HU Zhi-Kang, SHU Yu, WANG Hui, YANG Ying-Ying, LIAO Jun-Yu, LIU Jia, CHENG Hong-Tao, GUO Chen, ZHANG Yuan-Yuan, LIU Sheng-Yi, HU Qiong, MEI De-Sheng, LI Chao. Comprehensive evaluation of alkaline tolerance in Brassica napus at the seedling stage [J]. Acta Agronomica Sinica, 2025, 51(10): 2681-2692. |
|
||