Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 1022-1036.doi: 10.3724/SP.J.1006.2025.44155

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of coating with fulvic acid and alginate oligosaccharide on emergence and yield of late-sown rapeseed

SHE Hui-Jie1(), SUN Ming-Zhu2, LI Shi-Gang3, WANG Dong-Xian3, CHENG Tai4, JIANG Bo4, CHEN Ai-Wu4, WANG Jing1, ZHAO Jie1, WANG Bo1, KUAI Jie1, XU Zheng-Hua1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan Laboratory / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Jiangxi Agricultural Technology Extension Center, Nanchang 330046, Jiangxi, China
    3Jingmen Meteorological Bureau, Jingmen 448000, Hubei, China
    4Hubei Department of Rape Production Management, Wuhan 430070, Hubei, China
  • Received:2024-09-14 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-20
  • Contact: E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Program of Hubei Province(2023BBB028);Hubei Provincial Project(HBZY2023B001-01)

Abstract:

Delayed sowing significantly reduces the seedling emergence rate and overwintering biomass of oilseed rape. Ensuring high seedling emergence quality and increasing overwintering biomass are crucial strategies for improving the stress resistance and yield stability of late-sown oilseed rape. Using the rapeseed variety Zhongshuang 11, seven treatments were implemented, including a bare seed control (CK), basic pelletizing formulation (BC4), basic coating formulation (BC0), pelletizing with 2% fulvic acid (2%F) and 3% alginate oligosaccharide (3%H), and coating with 200 mg L-1 fulvic acid (200F) and 400 mg L-1 alginate oligosaccharide (400H). A field experiment was conducted in Wuhan, China, with sowing on October 26, to evaluate the effects of these treatments on germination, seedling growth, and yield performance of late-sown rapeseed. The results, this study investigated the effects of seed coatings containing fulvic acid and alginate oligosaccharides (via pelleting and coating) on improving seedling emergence, enhancing cold tolerance, and increasing overwintering biomass. Obtained over two years, showed that the emergence rate in the CK treatment was 53.6% and 59.4% in the 2022-2023 and 2023-2024 seasons, respectively. Treatments with fulvic acid and alginate oligosaccharides significantly improved emergence rates compared to CK, BC4, and BC0. These coatings also increased dry matter accumulation during the overwintering period and significantly enhanced plant height and root collar diameter compared to CK. Yield performance varied among treatments. Compared to CK, yields of pelletized seeds with 2% fulvic acid and 3% alginate oligosaccharide increased by 11.35% and 13.05% in 2022-2023, and by 16.01% and 18.20% in 2023-2024, respectively. Improving cold resistance during the overwintering period was a critical mechanism for enhancing biomass and yield through fulvic acid and alginate oligosaccharide treatments. Both fulvic acid and alginate oligosaccharide treatments significantly increased soluble sugar and proline contents in rapeseed seedlings under low-temperature conditions, enhanced antioxidant enzyme activities, and reduced the levels of H2O2, malondialdehyde (MDA), and O2-, thereby mitigating low-temperature damage. Notably, the soluble sugar content in seedlings treated with 400 mg L-1 alginate oligosaccharide coating was 53.5% higher than that in CK, while the MDA content in seedlings treated with 200 mg L-1 fulvic acid coating decreased by 53.38% compared to CK. Additionally, these treatments increased indole-3-acetic acid (IAA) content in rapeseed seedlings. The findings of this study provide technical support for enhancing the stress resistance and yield stability of late-sown oilseed rape.

Key words: rapeseed, late-sowing, seed pelletization, seed coating, fulvic acid, alginate oligosaccharide

Table 1

Screening of seed pelletization concentration of fulvic acid and alginate oligosaccharide"

物质
Substance
编号
Number
浓度
Concentration
物质
Substance
编号
Number
浓度
Concentration
黄腐酸
Fulvic acid
1%F 1.0% 褐藻寡糖
Alginate
oligosaccharide
1%H 1.0%
2%F 2.0% 2%H 2.0%
3%F 3.0% 2.5%H 2.5%
4%F 4.0% 3%H 3.0%
5%F 5.0% 3.5%H 3.5%
4%H 4.0%
对照
Control
CK 裸种子
Bare seed
BC4 丸粒化基础配方
Pelletizing basic formulation

Table 2

Screening of seed coating concentration of fulvic acid and alginate oligosaccharide"

物质
Substance
编号
Number
浓度
Concentration
物质
Substance
编号
Number
浓度
Concentration
黄腐酸
Fulvic acid
100F 100 mg L-1 褐藻寡糖
Alginate oligosaccharide
200H 200 mg L-1
200F 200 mg L-1 400H 400 mg L-1
300F 300 mgL-1 600H 600 mg L-1
400F 400 mg L-1 800H 800 mg L-1
对照
Control
CK 裸种子
Bare seed
BC0 包膜基础配方
Coating basic formulation

Table 3

Different exogenous substances and concentrations used for seed pelletization and coating late-sowing rapeseed"

对照
Contrast
编号
Number
丸粒化
Seed pelletization
编号
Number
包膜
Seed coating
编号
Number
裸种子
Bare seed
CK 2%黄腐酸
2% fulvic acid
2%F 200 mg L-1黄腐酸
200 mg L-1 fulvic acid
200F
丸粒化基础配方
Pelletizing basic formulation
BC4 3%褐藻寡糖
3% alginate oligosaccharide
3%H 400 mg L-1褐藻寡糖
400 mg L-1 alginate oligosaccharide
400H
包膜基础配方
Coating basic formulation
BC0

Fig. 1

The main meteorological factors in 2022-2023 and 2023-2024 growing season"

Table 4

Effect of fulvic acid and alginate oligosaccharide pelletization on seed germination and seedling growth of rapeseed under low-temperature conditions"

处理
Treatment
平均发芽
时间
Mean
germination
time (d)
发芽率
Germination
rate
(%)
平均出苗
时间
Mean
emergence
time (d)
出苗率
Emergence
rate
(%)
根干重
Dry weight
of root
(mg)
苗干重
Dry weight
of shoot
(mg)
根长
Root length
(cm)
苗长
Stem
length
(cm)
黄腐酸
丸粒化
Fulvic acid
pelletization
CK 3.34 d 86.67 c 11.41 a 84.67 b 1.97 c 4.02 c 6.37 a 1.70 c
BC4 3.43 d 85.33 c 11.37 a 82.33 b 2.01 c 4.07 c 6.32 a 1.76 c
1%F 4.08 c 94.67 ab 10.48 b 94.67 a 2.45 b 4.61 ab 6.05 a 2.11 b
2%F 4.19 c 98.67 a 10.42 b 96.00 a 2.55 a 4.88 a 6.13 a 2.44 a
3%F 4.32 bc 97.33 ab 10.67 b 92.00 a 2.48 b 4.67 a 6.23 a 2.43 a
4%F 4.67 b 93.33 abc 10.80 b 90.67 a 2.60 a 4.81 a 6.34 a 2.28 b
5%F 5.19 a 90.67 bc 11.25 a 86.00 b 2.32 bc 4.31 b 5.78 a 2.19 b
褐藻寡糖
丸粒化
Alginate
oligosaccharide pelletization
CK 4.19 a 86.00 c 11.18 a 82.00 b 1.87 b 3.66 d 5.87 bc 1.74 d
BC4 4.07 a 85.67 c 11.20 a 82.00 b 1.83 b 3.73 d 5.75 bc 1.81 d
1%H 3.92 b 94.00 b 10.62 d 89.33 a 2.13 a 4.40 bc 6.48 ab 2.19 bc
2%H 3.87 bc 93.33 b 10.53 d 90.67 a 2.50 a 4.77 b 6.32 abc 2.13 bcd
2.5%H 3.61 cd 96.00 ab 10.52 d 92.00 a 2.52 a 4.64 bc 6.96 a 2.63 a
3%H 3.44 d 99.33 a 10.31 d 94.00 a 2.52 a 5.36 a 6.92 a 2.46 ab
3.5%H 3.50 d 96.00 ab 10.53 d 90.00 a 2.45 a 4.24 c 5.57 c 2.02 cd
4%H 3.62 cd 91.33 b 10.56 d 92.00 a 2.44 a 4.38 bc 5.91 bc 2.17 bc

Table 5

Effect of fulvic acid and alginate oligosaccharide coating on seed germination and seedling growth of rapeseed at low temperature"

处理
Treatment
平均发芽时间
Mean germination time
(d)
发芽率
Germination rate
(%)
平均出苗时间
Mean emergence time
(d)
出苗率
Emergence rate
(%)
黄腐酸
包膜
Fulvic acid coating
CK 3.89 a 91.33 b 11.07 d 80.67 b
BC0 3.77 b 84.67 c 11.87 a 72.67 c
100F 3.46 e 92.67 b 11.50 c 82.00 b
200F 3.50 d 96.00 a 11.19 d 84.67 a
300F 3.69 c 95.33 a 11.74 b 84.67 a
400F 3.67 c 92.67 b 11.88 a 80.67 b
褐藻寡糖
包膜
Alginate oligosaccharide coating
CK 3.44 a 93.33 c 12.37 a 71.33 d
BC0 3.30 b 94.00 c 12.10 b 71.33 d
200H 3.10 c 95.33 ab 12.02 b 81.33 b
400H 2.98 d 96.00 ab 10.52 d 84.67 a
600H 2.80 e 97.33 a 11.01 c 85.33 a
800H 3.35 ab 94.00 c 12.13 b 76.67 c
处理
Treatment
根干重
Dry weight of root (mg)
苗干重
Dry weight of shoot (mg)
根长
Root length(cm)
苗长
Stem length (cm)
黄腐酸
包膜
Fulvic acid coating
CK 1.20 bc 4.10 d 7.01 b 1.93 e
BC0 1.04 e 4.16 c 7.09 a 2.11 c
100F 1.18 c 4.22 b 7.08 a 2.14 bc
200F 1.25 a 4.34 a 7.00 b 2.25 a
300F 1.23 bc 4.24 b 6.92 c 2.19 ab
400F 1.09 d 4.16 c 6.86 d 2.01 d
褐藻寡糖
包膜
Alginate oligosaccharide coating
CK 1.19 b 4.15 d 6.24 c 2.34 c
BC0 1.05 c 4.48 c 6.15 d 2.38 c
200H 1.29 a 4.67 b 6.73 b 2.53 a
400H 1.27 a 4.77 a 6.93 a 2.57 a
600H 1.26 a 4.61 b 6.70 b 2.47 b
800H 1.22 b 4.35 d 6.75 b 2.21 d

Fig. 2

Effect of fulvic acid, alginate oligosaccharide pelletization and coating on seedling emergence of of late-sowing rapeseed Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05. Treatments are the same as those given in Table 3."

Table 6

Effect of fulvic acid, alginate oligosaccharide pelletization and coating on key agronomic traits of late-sowing rapeseed at wintering satage"

年份
Year
处理
Treatment
株高
Plant height
(cm)
根颈粗
Root-crown diameter (mm)
绿叶数
Green
leaves
总叶数
Total
leaves
地上部干重
Dry weight of shoot (g plant-1)
地下部干重
Dry weight of root (g plant-1)
2022-
2023
CK 20.21 c 3.75 c 4.67 d 5.11 c 1.49 d 0.14 b
BC4 22.08 abc 3.73 c 5.00 cd 5.67 b 1.53 cd 0.13 b
2%F 22.95 ab 4.33 b 6.00 a 6.33 a 1.94 ab 0.18 ab
3%H 23.90 a 4.25 b 5.67 b 5.67 b 1.95 ab 0.20 ab
BC0 21.46 bc 3.83 c 5.33 c 5.44 bc 1.83 bc 0.14 b
200F 23.16 ab 4.89 a 5.67 b 5.67 b 2.25 a 0.22 ab
400H 23.23 ab 4.31 b 5.67 b 5.89 b 2.02 ab 0.26 a
2023-
2024
CK 16.70 c 3.05 c 5.00 c 6.11 a 0.80 c 0.18 d
BC4 16.74 c 3.07 c 4.44 d 5.67 b 0.76 c 0.19 d
2%F 20.00 a 4.26 a 5.67 a 6.44 a 1.29 a 0.20 cd
3%H 20.00 a 4.39 a 5.11 bc 6.33 a 1.14 b 0.28 a
BC0 17.77 bc 3.42 bc 4.45 d 5.22 c 0.82 c 0.13 e
200F 18.36 b 4.49 a 5.56 ab 6.22 a 1.27 a 0.22 bc
400H 20.09 a 3.89 ab 4.67 cd 5.67 b 1.28 a 0.24 b
方差分析ANOVA
年份Year (Y) ** ** ** ** ** **
处理Treatment (T) ** ** ** ** ** **
年份×处理Y×T ns ** ** ** ns ns

Table 7

Effects of fulvic acid, alginate oligosaccharide pelletization and coating on yield and yield components of late-sowing rapeseed"

年份
Year
处理
Treatment
产量
Yield
(kg hm-2)
成株率
Survival
rate (%)
单株产量
Yield
per plant (g)
单株角果数
Pod number per plant
每角粒数
Seed number
per pod
千粒重
1000-seed
weight (g)
2022-
2023
CK 2074.72 d 67.86 b 4.16 d 56.77 c 21.29 a 3.42 a
BC4 2230.64 bc 68.65 b 4.07 d 59.60 bc 20.04 a 3.40 a
2%F 2310.14 ab 74.60 a 4.62 b 66.30 a 20.82 a 3.44 a
3%H 2345.54 a 75.00 a 4.82 a 67.47 a 20.91 a 3.42 a
BC0 2127.40 cd 71.03 ab 4.34 c 60.13 b 20.75 a 3.43 a
200F 2232.61 bc 74.36 a 4.39 c 62.50 b 20.45 a 3.48 a
400H 2260.87 ab 71.83 ab 4.84 a 68.40 a 20.36 a 3.48 a
2023-
2024
CK 1373.53 e 69.12 c 3.18 e 52.14 e 19.86 a 3.07 a
BC4 1418.02 d 68.58 c 3.32 d 54.30 d 19.83 a 3.08 a
2%F 1594.43 ab 77.22 a 3.36 cd 55.71 bcd 20.25 a 3.08 a
3%H 1623.86 a 78.96 a 3.59 b 57.60 ab 20.03 a 3.09 a
BC0 1416.48 d 69.12 c 3.35 d 54.94 cd 19.62 a 3.07 a
200F 1545.41 c 71.81 bc 3.67 a 59.28 a 19.73 a 3.09 a
400H 1564.52 bc 75.27 ab 3.43 c 56.86 bc 19.58 a 3.08 a
方差分析ANOVA
年份Year (Y) ** ns ** ** ** **
处理Treatment (T) ** ** ** ** ns ns
年份×处理Y×T ns ns ** * ns ns

Table 8

Quality index of seed pelletization"

丸粒化处理
Pelleting
treatment
裂解度
Cracking rate (%)
有籽率
Seed rate
(%)
单籽率
Single seed rate (%)
单粒抗压强度
Compressive
strength (N)
丸粒化倍数
Pelletization multiple
整齐度
Uniformity
(%)
SC4 100 97 94 3.3 1.5 94
2%F 100 98 95 3.2 1.5 94
3%H 100 97 95 3.3 1.5 96

Fig. 3

Effect of fulvic acid, fucoidan pelletization and coating on osmotic adjustment substances in rape seedlings under low-temperature conditions Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05. Treatments are the same as those given in Table 3."

Fig. 4

Effect of fulvic acid, fucoidan pelletization and coating on the accumulation of reactive oxygen species in rape seedlings under low-temperature conditions Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05. Treatments are the same as those given in Table 3."

Fig. 5

Effect of fulvic acid, fucoidan pelletization and coating on antioxidant enzyme activity of rape seedlings at low temperature Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05. Treatments are the same as those given in Table 3."

Fig. 6

Effect of fulvic acid, alginate oligosaccharide pelletization and coating on hormone content of rapeseed seedlings at low-temperature conditions Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05. Treatments are the same as those given in Table 3."

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 等. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究. 作物学报, 2024, 50: 2091-2105.
doi: 10.3724/SP.J.1006.2024.34166
Lou H X, Huang X Y, Jiang M, Ning N, Bian M L, Zhang L, Luo D X, Qin M Q, Kuai J, Wang B, et al. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin. Acta Agron Sin, 2024, 50: 2091-2105 (in Chinese with English abstract).
[3] Elshafie H S, Camele I. Applications of absorbent polymers for sustainable plant protection and crop yield. Sustainability, 2021, 13: 3253.
[4] Pedrini S, Merritt D J, Stevens J, Dixon K. Seed coating: science or marketing spin? Trends Plant Sci, 2017, 22: 106-116.
doi: S1360-1385(16)30172-8 pmid: 27979716
[5] 王丹英, 应云卉, 徐春梅, 陈松, 章秀福. 水稻种子包衣技术的研究与应用. 中国稻米, 2012, 18(5): 20-24.
doi: 10.3969/j.issn.1006-8082.2012.05.006
Wang D Y, Ying Y H, Xu C M, Chen S, Zhang X F. Research and application of rice seed coating technology. China Rice, 2012, 18(5): 20-24 (in Chinese).
[6] 曲昭杰. 木醋液处理种子对油菜萌发生长的影响及应用技术研究. 华中农业大学硕士学位论文, 湖北武汉, 2023.
Qu Z J. Effect of Wood Vinegar Solution Treatment on Rapeseed Germination and Growth and Its Application Technology. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).
[7] Willenborg C J, Gulden R H, Johnson E N, Shirtliffe S J. Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agron J, 2004, 96: 786-791.
[8] 张丽丽, 史庆华, 巩彪. 中、碱性土壤条件下黄腐酸与磷肥配施对番茄生育和磷素利用率的影响. 中国农业科学, 2020, 53: 3567-3575.
doi: 10.3864/j.issn.0578-1752.2020.17.013
Zhang L L, Shi Q H, Gong B. Application of fulvic acid and phosphorus fertilizer on tomato growth, development, and phosphorus utilization in neutral and alkaline soil. Sci Agric Sin, 2020, 53: 3567-3575 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.17.013
[9] Braziene Z, Paltanavicius V, Avizienytė D. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environ Res, 2021, 195: 110824.
[10] Qin Y, Zhu H, Zhang M, Zhang H F, Xiang C, Li B C. GC-MS analysis of membrane-graded fulvic acid and its activity on promoting wheat seed germination. Molecules, 2016, 21: 1363.
[11] Nikoogoftar-Sedghi M, Rabiei V, Razavi F, Molaei S, Khadivi A. Fulvic acid foliar application: a novel approach enhancing antioxidant capacity and nutritional quality of pistachio (Pistacia vera L.). BMC Plant Biol, 2024, 24: 241.
doi: 10.1186/s12870-024-04974-0 pmid: 38570771
[12] 严国富, 吴亚芳, 汤洁. 促根剂对小麦种子发芽及幼苗生长的影响. 现代农业科技, 2023, (24): 1-3.
Yan G F, Wu Y F, Tang J. Effect of root promoting agents on wheat seed germination and seedling growth. Mod Agric Sci Technol, 2023, (24): 1-3 (in Chinese with English abstract).
[13] Guo Y L, Huang G M, Wei Z X, Feng T Y, Zhang K, Zhang M C, Li Z H, Zhou Y Y, Duan L S. Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agric Water Manag, 2023, 279: 108185.
[14] 王学江, 李峰, 迟艳, 孙林, 李浩铭, 王乐兵, 杨鲁光, 宋宛霖, 杨剑超, 刘正一. 褐藻寡糖对蕹菜生长量及生长速率的影响. 分子植物育种, 2022, 20: 4851-4857.
Wang X J, Li F, Chi Y, Sun L, Li H M, Wang L B, Yang L G, Song W L, Yang J C, Liu Z Y. The effect of brown algae oligosaccharides on the growth and growth rate of water spinach. Mol Plant Breed, 2022, 20: 4851-4857 (in Chinese with English abstract).
[15] 严国富, 杜朋潮, 李方敏, 汤洁. 褐藻酸寡糖对草莓光合特性及植株形态的影响. 现代农业科技, 2023, (15): 60-62.
Yan G F, Du P C, Li F M, Tang J. Effects of alginate oligosaccharides on photosynthetic characteristics and plant morphology of strawberry. Mod Agric Sci Technol, 2023, (15): 60-62 (in Chinese with English abstract).
[16] Li Z M, Duan S P, Lu B S, Yang C M, Ding H Q, Shen H. Spraying alginate oligosaccharide improves photosynthetic performance and sugar accumulation in Citrus by regulating antioxidant system and related gene expression. Front Plant Sci, 2023, 13: 1108848.
[17] 张迷敏, 李静梅, 乔宇, 彭晴, Eromosele O, 陈旭, 谢越, 杲龙, 石波. 褐藻酸寡糖诱导下大豆营养成分的变化. 中国农业科学, 2015, 48: 3239-3248.
doi: 10.3864/j.issn.0578-1752.2015.16.013
Zhang M M, Li J H, Qiao Y, Peng Q, Ojokoh E, Chen X, Xie Y, Gao L, Shi B. Changes in nutritional properties of soybeans induced by alginate oligosaccharides. Sci Agric Sin, 2015, 48: 3239-3248 (in Chinese with English abstract).
[18] 谢锦, 韩立朴. 我国种子丸粒化研究现状及展望. 中国生态农业学报(中英文), 2024, 32: 605-615.
Xie J, Han L P. Current status and prospects of seed pelleting research in China. Chin J Eco-Agric, 2024, 32: 605-615 (in Chinese with English abstract).
[19] Batool M, El-Badri A M, Wang Z K, Mohamed I A A, Yang H Y, Ai X Y, Salah A, Hassan M U, Sami R, Kuai J, Wang B, Zhou G S. Rapeseed Morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 2022, 12: 579.
[20] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006.
Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006 (in Chinese).
[21] 李合生. 现代植物生理学学习指南. 北京: 高等教育出版社, 2007.
Li H S. A Study Guide to Modern Plant Physiology. Beijing: Higher Education Press, 2007 (in Chinese).
[22] Rajjou L C, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565
[23] Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 62: 3289-3309.
doi: 10.1093/jxb/err030 pmid: 21430292
[24] 连艺佳, 刘瑞, 王嘉杰, 徐文伊, 晏迪, 王婷, 洪越, 王晔, 段留生, 李润枝. 低温对冬小麦萌发生理特性的影响. 北京农学院学报, 2023, 38(4): 1-7.
Lian Y J, Liu R, Wang J J, Xu W Y, Yan D, Wang T, Hong Y, Wang Y, Duan L S, Li R Z. Effects of low temperature on growth and physiological characteristics of winter wheat during germination. J Beijing Univ Agric, 2023, 38(4): 1-7 (in Chinese with English abstract).
[25] 张钰钦, 杨之帆, 李越, 李银水, 胡小加, 秦璐, 廖星. 外源海藻糖浸种对低温胁迫油菜种子萌发及幼苗生长的影响. 中国油料作物学报, 2022, 44: 376-384.
doi: 10.19802/j.issn.1007-9084.2020317
Zhang Y Q, Yang Z F, Li Y, Li Y S, Hu X J, Qin L, Liao X. Effect of exogenous trehalose on seed germination and seedling growth of rapeseed under low temperature. Chin J Oil Crop Sci, 2022, 44: 376-384 (in Chinese with English abstract).
[26] 张曼. H2O2浸种对低温胁迫下油菜种子萌发和幼苗生长的影响. 南京农业大学硕士学位论文, 江苏南京, 2017.
Zhang M. Effects of Seed Soaking with Hydrogen Peroxide on Seed Germination and Seedling Growth in Rape under Chilling Stress. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[27] 李英浩, 刘景辉, 赵宝平, 米俊珍, 田露. 黄腐酸浸种对燕麦种子萌发及幼苗生长的影响. 种子, 2023, 42(2): 72-76.
Li Y H, Liu J H, Zhao B P, Mi J Z, Tian L. Effects of soaking seeds with fulvic acid on seed germination and seedling growth of oats. Seed, 2023, 42(2): 72-76 (in Chinese with English abstract).
[28] Zhang K K, Khan Z, Yu Q, Qu Z J, Liu J H, Luo T, Zhu K M, Bi J G, Hu L Y, Luo L J. Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants (Basel), 2022, 11: 2864.
[29] 韦娜. 叶面喷施黄腐酸对粮饲兼用型燕麦产量、品质及饲用价值的影响. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2023.
Wei N. Effect of Foliar Spraying Fulvic Acid on Yield, Quality and Feeding Value of Grain and Feed Oats. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2023 (in Chinese with English abstract).
[30] 孙冰, 张金梅, 刘朋宇, 张颖, 苏红玲, 王郡霞. 不同浓度褐藻寡糖对黄瓜生长、产量、品质与抗氧化酶及其基因表达的影响. 江苏农业科学, 2023, 51(13): 175-181.
Sun B, Zhang J M, Liu P Y, Zhang Y, Su H L, Wang J X. Impacts of different concentrations of brown algal oligosaccharides on growth, yield, quality and expression of antioxidant enzymes and their genes of cucumber. Jiangsu Agric Sci, 2023, 51(13): 175-181 (in Chinese with English abstract).
[31] 李防洲, 辛慧慧, 周广威, 李哲, 侯振安, 冶军. 水杨酸包衣剂包衣棉种对棉花幼苗抗寒性的影响. 棉花学报, 2015, 27: 589-594.
doi: 10.11963/issn.1002-7807.201506012
Li F Z, Xin H H, Zhou G W, Li Z, Hou Z A, Ye J. Effects of the seed film coating salicylic acid on the chilling tolerance of cotton seedlings. Cotton Sci, 2015, 27: 589-594 (in Chinese with English abstract).
doi: 10.11963/issn.1002-7807.201506012
[32] 曹宏, 王玺, 王晓丽, 张伟伟, 苏展, 杨玉廷. 低温逆境下氯化胆碱包衣对玉米种子萌发及幼苗生理生化指标的影响. 玉米科学, 2011, 19(3): 102-104.
Cao H, Wang X, Wang X L, Zhang W W, Su Z, Yang Y T. Effects of choline chloride seed-coating on seed germination and the physiological and biochemical guideline of seedling in maize under low temperature stress. J Maize Sci, 2011, 19(3): 102-104 (in Chinese with English abstract).
[33] Zhang Y H, Yin H, Zhao X M, Wang W X, Du Y G, He A L, Sun K G. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr Polym, 2014, 113: 446-454.
[34] 石朋飞. 风化煤制备可溶性腐植酸盐及腐植酸液体肥料研究. 郑州大学硕士学位论文, 河南郑州, 2016.
Shi P F. Study on Preparation of Soluble Humate and Humic Acid Liquid Fertilizer from Weathered Coal. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2016 (in Chinese with English abstract).
[35] 付宇航, 杨甜, 温瑞琦, 王香, 张显, 马建祥. 嫁接方式对低温胁迫下甜瓜幼苗光合特性及抗氧化系统的影响. 西北植物学报, 2024, 44: 1017-1027.
Fu Y H, Yang T, Wen R Q, Wang X, Zhang X, Ma J X. Effects of grafting patterns on photosynthetic characteristics and antioxidant system of Cucumis melo seedlings under low temperature stress. Acta Bot Boreali-Occident Sin, 2024, 44: 1017-1027 (in Chinese with English abstract).
[36] 孙燕, 刘韵, 王全九, 狄雅荷, 王春宏, 王建. 三种浸种剂对Na2SO4胁迫下小麦种子萌发期耐盐性的影响. 麦类作物学报, 2024, 44: 101-109.
Sun Y, Liu Y, Wang Q J, Di Y H, Wang C H, Wang J. Effects of different soaking agents on salt tolerance of wheat seeds during germination under Na2SO4 stress. J Triticeae Crops, 2024, 44: 101-109 (in Chinese with English abstract).
[37] 朱珊珊. 干旱胁迫下黄腐酸调控燕麦光合能力与抗旱增产机制. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2023.
Zhu S S. Regulation of Photosynthetic Capacity and Drought Resistance and Yield-increasing Mechanism of Oat by Fulvic Acid under Drought Stress. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).
[38] 刘瑞志, 江晓路, 管华诗. 褐藻寡糖激发子诱导烟草抗低温作用研究. 中国海洋大学学报(自然科学版), 2009, 39(2): 243-248.
Liu R Z, Jiang X L, Guan H S. Effects of alginate-derived oligosaccharide on the low temperature resistance of tobacco leaves. Period Ocean Univ China, 2009, 39(2): 243-248 (in Chinese with English abstract).
[39] Lin D, Yan R Y, Xing M Y, Liao S Y, Chen J Y, Gan Z Y. Fucoidan treatment alleviates chilling injury in cucumber by regulating ROS homeostasis and energy metabolism. Front Plant Sci, 2022, 13: 1107687.
[40] 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响. 浙江农业学报, 2022, 34: 1935-1944.
doi: 10.3969/j.issn.1004-1524.2022.09.12
Ding D X, Li N H, Li J, Tang C N, Wang C, Niu T H, Yang Y, Yang H T, Xie J M. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress. Acta Agric Zhejiangensis, 2022, 34: 1935-1944 (in Chinese with English abstract).
[41] 何淑萍, 王娟, 王托和, 范惠玲, 缪纯庆. 黄腐酸处理对甘蓝型春油菜生理指标的影响. 农业科技与信息, 2021, (3): 59-62.
He S P, Wang J, Wang T H, Fan H L, Miao C Q. Effects of fulvic acid treatment on physiological indexes of spring rape in Brassica napus L. Agric Sci Technol Inf, 2021, (3): 59-62 (in Chinese).
[42] 余贝. 盐胁迫下SNRK1a对水稻生理机制的影响及调控措施研究. 吉林农业大学硕士学位论文, 吉林长春, 2023.
Yu B. Effects of SNRK1a on Physiological Mechanism of Rice under Salt Stress and Its Control Measures. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2023 (in Chinese with English abstract).
[43] Liu H, Zhang Y H, Yin H, Wang W X, Zhao X M, Du Y G. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem, 2013, 62: 33-40.
[44] Miransari M, Smith D L. Plant hormones and seed germination. Environ Exp Bot, 2014, 99: 110-121.
[45] 李娜, 李菲, 李凤鸣, 丛子健. 黄腐酸对夏玉米水分利用效率及生理指标的影响. 水土保持应用技术, 2021, (2): 1-3.
Li N, Li F, Li F M, Cong Z J. Effects of fulvic acid on water use efficiency and physiological indexes of summer maize. Technol Soil Water Conserv, 2021, (2): 1-3 (in Chinese).
[46] Silverman F P, Assiamah A A, Bush D S. Membrane transport and cytokinin action in root hairs of Medicago sativa. Planta, 1998, 205: 23-31.
[1] SU Qing-Fang, SUN Xiao-Zhao, LIN Yang, FU Yan-Ping, CHENG Jia-Sen, XIE Jia-Tao, JIANG Dao-Hong, CHEN Tao. Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 358-369.
[2] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[3] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[4] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[5] ZHANG Qi-Qi, CHEN Jie-Chang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHAO Si-Ming, JIA Cai-Hua, ZHOU Guang-Sheng. Effect of high density planting on the quality of cold pressed rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(9): 2358-2370.
[6] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[7] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[8] YAN Zi-Heng, WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie, ZHOU Guang-Sheng. Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(7): 1818-1828.
[9] XIE Xiong-Ze, XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng. Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(7): 1829-1840.
[10] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[11] NING Ning, YU Xin-Ying, QIN Meng-Qian, LOU Hong-Xiang, WANG Zong-Kai, WANG Chun-Yun, JIA Cai-Hua, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHAO Jie, ZHOU Guang-Sheng. Effect of key cultivated measures on rapeseed oil comprehensive quality [J]. Acta Agronomica Sinica, 2024, 50(6): 1554-1567.
[12] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[13] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[14] GUO Mao-Chang, CHEN Du-Juan, YUAN Jin-Zhan, ZHANG Zhe, JIANG Bo, YANG Shu-Ting, CHEN Min, GUO An-Da, WANG Qi, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of foliar spraying regulators on nitrogen utilization during the overwintering stage and yield of late-sowing rapeseed [J]. Acta Agronomica Sinica, 2024, 50(11): 2870-2882.
[15] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!