Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (03): 423-429.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Effects of High Temperature during Grain Filling on Key Enzymes Involved in Starch Synthesis in Two Wheat Cultivars with Different Quality Types

ZHAO Hui;DAI Ting-Bo;JING Qi;JIANG Dong;CAO Wei-Xing;LU Wei and TIAN Xiao-Wei   

  1. Key Laboratory of Crop Growth Regulation,Ministry of Agriculture,Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2005-02-25 Revised:1900-01-01 Online:2006-03-12 Published:2006-03-12
  • Contact: CAO Wei-Xing

Abstract:

High temperature is a key factor during wheat grain filling affecting grain yield and quality in main production areas of China, but the physiological mechanism of quality formation related to high temperature stress remains unclear. The experiments were carried out in growth chambers to investigate the effects of high temperature conditions during grain filling on the formation of total starch, amylopectin and amylose, and the activities related to starch synthesis using two wheat cultivars including Yangmai 9 with low grain protein content and Xuzhou 26 with high grain protein content. Four day/night temperature regimes of 34℃/22℃, 32℃/24℃, 26℃/14℃ and 24℃/16℃ from 7 days after anthesis until maturity were established, which included two daily average temperatures 28℃ and 20℃, and two day-night temperature differences 12℃and 8℃. The results showed that the contents of total starch and amylopectin were markedly reduced, but amylose content was slightly affected (Fig.1, Fig.2, Fig.3 and Table 1), and the ratio of amylopectin to amylose was reduced significantly in higher temperature treatments. During the early period of grain filling, the activities of key enzymes such as sucrose synthase (SS) and granule-bound starch synthase (GBSS) were enhanced, but the activities of SS, GBSS and soluble starch synthase (SSS) during the late period of grain filling were decreased in high temperature treatments (Fig.4, 6, 7). GBSS activity was increased in Yangmai 9, and SSS activity was decreased in Xuzhou26 during early period of grain filling under high temperatures (Fig. 6,7), indicating the different enzymology mechanism in two wheat cultivars. In addition, under high temperatures, grain starch content was similar between two treatments with day-night temperature differences in two wheat cultivars. Under optimum temperatures, grain starch content was higher in the treatment of 26℃/14℃(Fig. 1). Moreover, under high temperatures, SS activity was higher in the treatment of 34℃/22℃ during the middle and late period of grain filling, whereas the activities of SSS and GBSS were higher under 32℃/24℃ (Fig. 4, 6, 7). Under optimum temperatures, the activities of three key enzymes were higher in the treatment with higher day-night temperature difference (26℃/14℃). The above results indicated that starch synthesis was affected more by temperature levels than by day-night temperature differences.

Key words: Wheat, High temperature, Starch, Starch synthase, Sucrose synthase

CLC Number: 

  • S512
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[13] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[14] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[15] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!