Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2007, Vol. 33 ›› Issue (08): 1372-1374.

• RESEARCH NOTES • Previous Articles     Next Articles

Distribution of Grain Hardness and Puroindoline Alleles in Landraces, Historical and Current Wheats in Shandong Province

LI Gen-Ying12,XIA Xian-Chun2,HE Zhong-Hu23*,SUN Qi-Xin4,HUANG Cheng-Yan1   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong; 2 Institute of Crop Sciences/National Wheat Improvement Center/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081; 3 CIMMYT China Office, Beijing 100081; 4 China Agricultural University, Beijing 100094, China
  • Received:2006-10-09 Revised:1900-01-01 Online:2007-08-12 Published:2007-08-12
  • Contact: HE Zhong-Hu

Abstract:

Studies on the grain hardness and puroindolines alleles in wheat cultivars released in different historical periods, are helpful for breeding wheat cultivar with optimal endosperm texture. In the present study, 523 accessions from Shandong Province including 431 landraces, 63 historical cultivars and 29 current cultivars were used to evaluate the SKCS hardness and distribution of puroindoline alleles (Pins). Distribution of grain hardness differed in landraces, historical cultivars and current wheats, with 75.6%, 20.4%, and 3.9% of hard texture, and 20.4%, 19.0%, and 13.8% of mixed wheats, and 3.9%, 68.3%, and 58.6% of soft grains, respectively. Six genotypes of Pina and Pinb were present in landraces, in which Pina-D1a/Pinb-D1p and Pina-D1b/Pinb-D1b were the dominant genotypes, accounting for 38.0% and 59.6% of hard wheat, respectively. Compared with landraces, the polymorphism of Pina and Pinb was decreased in historical cultivars. Pina-D1b/Pinb-D1a, Pina-D1a/Pinb-D1b, and Pina-D1a/Pinb-D1p accounted for 37.5%, 37.5%, and 25.0% of hard wheat, respectively, whereas, Pina-D1a/Pinb-D1b was the only genotype presented in hard genotype of current cultivars surveyed. A novel Pinb allele with double mutations at the positions of 96th (C to A) and 265th (deletion of A) was found in three landraces, and was designated as Pinb-D1aa.

Key words: Common wheat (Triticum aestivam), Grain hardness, Pina, Pinb, Allelic variation

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[3] LIU Pei-Xun,MA Xiao-Fei,WAN Hong-Shen,ZHENG Jian-Min,LUO Jiang-Tao,PU Zong-Jun. Comparative proteomic analysis of two wheat genotypes with contrasting grain softness index [J]. Acta Agronomica Sinica, 2020, 46(8): 1275-1282.
[4] WANG Juan,DONG Cheng-Guang,LIU Li,KONG Xian-Hui,WANG Xu-Wen,YU Yu. Association Analysis and Exploration of Elite Alleles of Mechanical Harvest-Related Traits with SSR Markers in Upland Cotton Cultivars (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2017, 43(07): 954-966.
[5] DONG Xue,LIU Meng,ZHAO Xian-Lin,FENG Yu-Mei,YANG Yan. Isolation and Characterization of LMW-GS Glu-A3 in Common Wheat Related Species [J]. Acta Agron Sin, 2017, 43(06): 829-838.
[6] KOU Cheng,GAO Xin,LI Li-Qun,LI Yang,WANG Zhong-Hua,LI Xue-Jun*. Composition and Selection of TaGW2-6A Alleles for Wheat Kernel Weight [J]. Acta Agron Sin, 2015, 41(11): 1640-1647.
[7] LI Wen,WAN Qian,LIU Feng-Zhen*,ZHANG Kun,ZHANG Xiu-Rong,LI Guang-Hui,WAN Yong-Shan. Allelic Variation of Transcription Factor Genes NAC4 in Arachis Species [J]. Acta Agron Sin, 2015, 41(01): 31-41.
[8] HU Wen-Ming,KAN Hai-Hua,WANG Wei,XU Chen-Wu. Statistical Genetics Approach for Functional Difference Identification of Allelic Variations and Its Application [J]. Acta Agron Sin, 2014, 40(01): 72-79.
[9] LIU Ya-Nan,XIA Xian-Chun,HE Zhong-Hu. Characterization of Dense and Erect Panicle 1 Gene (TaDep1) Located on Common Wheat Group 5 Chromosomes and Development of Allele-Specific Markers [J]. Acta Agron Sin, 2013, 39(04): 589-598.
[10] HUANG Bing-Yan,ZHANG Xin-You,MIAO Li-Juan,GAO Wei,HAN Suo-Yi,DONG Wen-Zhao,TANG Feng-Shou,LIU Zhi-Yong. Allelic Expression Variation of ahFAD2A and its Relationship with Oleic Acid Accumulation in Peanut [J]. Acta Agron Sin, 2012, 38(10): 1752-1759.
[11] LI Wei-Yu,ZHANG Bin,ZHANG Jia-Nan,CHANG Xiao-Ping,LI Run-Zhi,JING Rui-Lian. Exploring Elite Alleles for Chlorophyll Content of Flag Leaf in Natural Population of Wheat by Association Analysis [J]. Acta Agron Sin, 2012, 38(06): 962-970.
[12] WU Yong-Sheng,LI Xin-Hai,HAO Zhuan-Fang,ZHANG Shi-Huang,XIE Chuan-Xiao. Genomic DNA Sequence,Gene Structure,Conserved Domains,and Natural Alleles of Gln1-4 Gene in Maize [J]. Acta Agron Sin, 2009, 35(6): 983-991.
[13] SHI Gui-Ying,SHANG Xun-Wu,WANG Hua-Jun,MA Xiao-Le,HU Bing-Fen,LI Chang-Sheng. Responses of Flour Quality and Dough Rheological Properties to Stiobion avenae F. Inoculated in Spring Wheat [J]. Acta Agron Sin, 2009, 35(12): 2273-2279.
[14] LI Gen-Ying;XIA Xian-Chun;ZHANG Ming;ZHANG Yong;HE Zhong-Hu;SUN Qi-Xin. Allelic Variations of Puroindoline a and Puroindoline b Genes in New Type of Synthetic Hexaploid Wheats from CIMMYT [J]. Acta Agron Sin, 2007, 33(02): 242-249.
[15] CHEN Feng;HE Zhong-Hu;Morten Lillemo;XIA Xian-Chun. Detection of Allelic Variation for Grain Hardness in CIMMYT Common Wheats [J]. Acta Agron Sin, 2005, 31(10): 1277-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!