Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2007, Vol. 33 ›› Issue (12): 1943-1948.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Bayesian Analysis of All Markers on the Entire Genome in the F2:3 Design

WAN Su-Qin1,SHAO Yan-Hua2,YUAN You-Lu2,ZHANG Yuan-Ming1*   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 Cotton Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455004, Henan, China
  • Received:2007-03-26 Revised:1900-01-01 Online:2007-12-12 Published:2007-12-12
  • Contact: ZHANG Yuan-Ming

Abstract: In the inheritance analysis of quantitative traits with relatively low heritability, the precision is relatively low. In this situation, an F2:3 design, which is genotyped in F2 plants and phenotyped in the F2:3 progeny, is applied to increase the precision in the detection of quantitative trait loci (QTL). However, there are two issues needed to be further considered. One is to take full advantage of the mixture distribution for F2:3 families of heterozygous F2 plants, and the other to adopt multi-QTL genetic model. In this article, therefore, we extended our previous method from a single-QTL genetic analysis to joint analysis of all markers on the entire genome in the F2:3 design. The proposed method here is on the basis of multi-QTL genetic model, and also takes full advantage of the mixture distribution mentioned above. Results of simulated studies showed that the new method provides accurate estimates for both the effects and the positions of QTL. Moreover, two strategies for sampling QTL effects were compared and the new one is better than the old one. In conclusion, the new method may is more suitable for mapping QTL for complex traits with low heritability.

Key words: Bayesian shrinkage estimation, Quantitative trait locus, multiple marker analysis, F2:3 design

[1] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[2] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[3] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[4] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[5] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[6] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
[7] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
[8] SHE Dong, LIU Qiang-Ming, LI Da-Lu, LIANG Yin-Feng, LIU Er-Bao,DANG Xiao-Jing,HONG De-Lin. QTL Mapping of Seven Panicle Traits in Rice (Oryza sativa L.) Using Chromosome Segment [J]. Acta Agron Sin, 2017, 43(05): 658-668.
[9] BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*. Fine Mapping andGenetic Effect Analysis of qKRN5.04, a Major QTL Associated with Kernel Row Number [J]. Acta Agron Sin, 2017, 43(01): 63-71.
[10] CHEN Qiang,YAN Long,DENG Ying-Ying,Xiao Er-ning,Liu Bing-Qiang,YANG Chun-Yan*,ZHANG Meng-Chen*. Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean [J]. Acta Agron Sin, 2016, 42(09): 1309-1318.
[11] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[12] LIU Xin-Yan,ZHU Kong-Zhi,ZHANG Chang-Quan,HONG Ran,SUN Peng,TANG Su-Zhu,GU Ming-Hong,LIU Qiao-Quan. Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background [J]. Acta Agron Sin, 2014, 40(10): 1740-1747.
[13] CHEN Yu-Yu,ZHU Yu-Jun,ZHANG Hong-Wei,WANG Lin-Lin,FAN Ye-Yang,ZHUANG Jie-Yun. Validation and Dissection of Minor QTL qTGW1.2 for Thousand-Grain Weight in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2014, 40(05): 761-768.
[14] ZHANG Jian,Aijaz Ahmed SOOMRO,CHAI Lu,CUI Yan-Ru,WANG Xiao-Qian,ZHENG Tian-Qing,XU Jian-Long,LI Zhi-Kang. Mapping of QTL for Ferrous and Zinc Toxicity Tolerance at Seedling Stage Using a Set of Reciprocal Introgression Lines in Rice [J]. Acta Agron Sin, 2013, 39(10): 1754-1765.
[15] NIU Yuan,XIE Fang-Teng,BU Shu-Hong,XIE Shang-Qian,HAN Shi-Feng,GENG Qing-Chun,LIU Bing,ZHANG Yuan-Ming. Fine Mapping of Quantitative Traits Loci for Seed Shape Traits in Soybean [J]. Acta Agron Sin, 2013, 39(04): 609-616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!