Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (01): 119-125.doi: 10.3724/SP.J.1006.2008.00119

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of N Accumulation and Translocation in Rice Genotypes with Different N Use Efficiencies

WEI Hai-Yan1,ZHANG Hong-Cheng12*,HANG Jie1,DAI Qi-Gen12,HUO Zhong-Yang12,XU Ke12,ZHANG Sheng-Fei1,MA Qun1,ZHANG Qing1,ZHANG Jun3   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University; 2 Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture; 3 Yangzhou Resource and Environment Professional Technology College, Yangzhou 225009, Jiangsu, China

  • Received:2007-04-09 Revised:1900-01-01 Online:2008-01-12 Published:2008-01-12
  • Contact: ZHANG Hong-Cheng

Abstract:

N is yet the most important and largest input required in rice production although over use of N causes so many environment problems. N use efficiency is varied in different rice genotypes. Therefore it is necessary to identify the physiological mechanism of N absorption and utilization in different rice genotypes in order to increase N use efficiency through rice cultivar improvement. In this research, field experiment with 225 kg ha-1 N fertilizer application and twelve rice genotypes (6 N-efficient and 6 N-low-efficient ) selected from 120 rice cultivars grown in Yangzhou during 2004 and 2005 were carried out in 2006 on the farm of Yangzhou University, Jiangsu province, China. Relationship between N use efficiency and indexes of rice N accumulation and translocation was analyzed. At the three growth stages including critical stage of productive tillering, heading, and maturing, the amount of N accumulation of N-efficient rice was obviously higher than that of N-low-efficient genotypes while at the stage of elongating, there was no significant difference in N accumulation between the two rice genotypes. In order to analyze the N accumulation progress of rice genotypes with different N use efficiency, the growth was also divided into four phases including from transplanting to critical stage of productive tillering, from critical stage of productive tillering to elongating, from elongating to heading and from heading to maturing. Results revealed that the amount of N accumulation of N-efficient genotypes was significantly higher than that of N-low-efficient genotypes during all growth phases except the phase from critical stage of productive tillering to elongating, at which the amount of N accumulation of N-efficient genotypes was significantly lower than that of N-low-efficient genotypes. The percentage in N accumulation of N-efficient genotypes was higher than that of N-low-efficient genotypes during the growth phases from elongating to heading and from heading to maturing while it showed the reversed trend during the phases from transplanting to critical stage of productive tillering and from the critical stage of productive tillering to elongating. The amount and the efficiency of N translocation before heading were obviously higher in N-efficient genotypes than those in N-low-efficient genotypes. On the contrary, the contribution rate of transferred N to the total N of rice grain at maturity was significantly lower in N-efficient genotypes than that in N-low-efficient genotypes. For N efficient genotypes, the amount of N accumulation before the critical stage of productive tillering was modest. And during the phase from the critical stage of productive tillering to heading, its N accumulation of usefulness was large while the N accumulation of uselessness was few. Therefore, till the stage of rice heading, the amount of N accumulation of N-efficient genotypes was obviously higher than that of N-low-efficient genotypes. And the amount and the efficiency of N translocation before heading of N-efficient genotypes were also higher than that of N-low-efficient genotypes. Because of the strong ability of N accumulation of N-efficient genotypes after heading, its contribution rate of transferred N to the total N of rice grain at maturity was relatively lower than that of N-low-efficient genotypes before heading.

Key words:

Rice, N use efficiency, N accumulation, N translocation, Correlation

[1] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[2] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[3] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[4] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[5] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[6] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[7] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[8] LIU Yan-Lan, GUO Xian-Shi, ZHANG Xu-Cheng, MA Ming-Sheng, WANG Hong-Kang. Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato [J]. Acta Agronomica Sinica, 2021, 47(2): 320-331.
[9] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
[10] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[11] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[12] Tian-Yao MENG,Jia-Lin GE,Xu-Bin ZHANG,Huan-He WEI,Yu LU,Xin-Yue LI,Yuan TAO,En-Hao DING,Gui-Sheng ZHOU,Qi-Gen DAI. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2020, 46(5): 798-806.
[13] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
[14] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[15] HAN Kang, YU Jing, SHI Xiao-Hua, CUI Shi-Xin, FAN Ming-Shou. Inversion of nitrogen accumulation in potato leaf with different spectral indices [J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!