Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (10): 1657-1665.doi: 10.3724/SP.J.1006.2010.01657

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Dissection of Segregation Distortion in Interspecific BC1 Populations of Cotton

YU Yu1,2,ZHANGYan-Xin1,LINZhong-Xu1*,ZHANG Xian-Long 1   

  1. 1National Key Laboratory of Crop Genetic Improvement & National Centre of Plant Gene Research,Huazhong Agricultural University,Wuhan 430070,China;2Cotton Institute,Xinjiang Academy of Agriculture and Reclamation Science,Shihezi 832000,China
  • Received:2010-01-19 Revised:2010-05-20 Online:2010-10-12 Published:2010-07-05
  • Contact: Lin Zhong-Xu E-mail: linzhongxu@mail.hzau.edu.cn; Tel: +86-2787283955
  • Supported by:
    This study wassupported bythe National Basic Research Program (973 Program) (2010CB126001).

Abstract: Segregation distortion (SD) is the deviation of genetic segregation ratios from their expected Mendelian fashion and is a common phenomenon found in most genetic mapping studies. In our previously genetic map published, 107 SSR markers showed SDin the BC1 mapping population [(Emian 22×3-79) × Emian 22]. To verify their segregation in other populations and to clarify the possible mechanism of SD, 97 co-dominant markers of them were evaluated in another two backcross populations. The results showed that 61 distorted markers in the mapping population segregated normally in the other backcross populations, which implied that the cross way is a major factor affecting segregation distortion. Thirty-six markers showed segregation distortion in at least two populations, which is assumed to be caused by gametic selection. These distorted markers distributed on 14 Chromosomes with more markers in D sub-genome than in A sub-genome. Chr.2, Chr.16, and Chr.18 were the Chromosomes with more distorted markers than others, which implies that there must be segregation distortion loci on these Chromosomes, leading us to identify segregation distortion loci in cotton.

Key words: Cotton, Simple sequence repeats(SSR), Segregation distortion(SD), Backcross population

[1] Mangelsdorf P C, Jones D F. The expression of mendelian factors in the gametophyte of maize. Genetics, 1926, 11: 423-455
[2] Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M. Detection of segregation distortions in an indica-japonca rice cross using a high-resolution molecular map.Theor Appl Genet, 1996, 92: 145-150
[3] Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid and recombinant inbred populations in rice Oryza sativa L. Mol Gen Genet, 1997, 253: 535-545
[4] Matsushita S, Iseki T, Fukuta Y, Araki E, Kobayashi S, Osaki M, Yamagishi M. Characterization of segregation distortion on Chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica, 2003, 134: 27-32
[5] Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002, 105: 622-628
[6] Sibov S T, de Souza Jr C L, Garcia A A F, Gareia A F, Silva A R, Mangolin C A, Benchimol L L, de Souza A P. Molecular mapping in tropical maize Zea mays L. using microsatellite markers. I. Map construction and localization of loci showing distorted segregation. Hereditas, 2003, 139: 96-106
[7] Messmer M M, Keller M, Zanetti S, Keller B. Genetic linkage map of a wheat × spelt cross. Theor Appl Genet, 1999, 98: 1163-1170
[8] Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr C. An integrative genetic linkage map of winter wheat Triticum aestivum L. Theor Appl Genet, 2003, 107: 1235-1242
[9] Liu G(刘刚), Xu S-B(许盛宝), Ni Z-F(倪中福), Li J(李晶), Qin D-D(秦丹丹), Dou B-D(窦秉德), Peng H-R(彭惠茹), Sun Q-X(孙其信). Genetic analysis of segregation distortion of molecular markers in wheat RIL population. J Agric Biotech (农业生物技术学报),2007, 15: 828-833 (in Chinese with English abstract)
[10] Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann R G. Construction of an RFLP map of barley. Theor Appl Genet, 1991, 83: 250-256
[11] Heun M, Kennedy A E, Anderson J A, Lapitan N L V, Sorrells S E, Tanksley S D. Construction of a restriction fragment length polymorphism map for barley Hordeum vulgare. Genome, 1991, 34: 437-447
[12] Devaux P, Kilian A, Kleinhofs A. Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet, 1995, 249: 600-608
[13] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparative across species, generations and environments. Genetics, 1991, 127: 181-197
[14] Pillen K, Steinrü C G, Herrmann R G, Jung C. An extended linkage map of sugar beet Beta vulgans L. including nine putative lethal genes and the restorer gene X. Plant Breed, 1993, 111: 265-272
[15] Brummer E C, Bouton J H, Kochert G. Development of a RFLP map in diploid alfalfa. Theor Appl Genet, 1993, 86: 329-332
[16] Kaló P, Entire G, Zimá ayi, L, Csaná di G. Construction of an improved linkage map of diploid alfalfa Medicago sativa. Theor Appl Genet, 2000, 100: 641-657
[17] Ky C L, Barre P, Lorieux M, Thouslo P, Akaffou S, Louam J, Charrier A, Hamon S, Noirot M. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee Coffea sp. Theor Appl Genet, 2000, 101: 669-676
[18] Busso C S, Liu C J, Hash C T, Witcombe J R, Devos K M, de Wet J M J, Gale M D. Analysis of recombination rate in female and male gametogenesis in pearl millet Pennisetum glaucum using RFLP markers. Theor Appl Genet, 1995, 90: 242-246
[19] Liu C J, Devos K M, Witcombe J R, Pittaway T S, Gale M D. The effect of genome and sex on recombination rates in Pennisetum species. Theor Appl Genet, 1996, 93: 902-908
[20] Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission of cotton Gossypium. Genetics, 2004, 166: 389-417
[21] Lacape J M, Nguye T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46: 612-626
[22] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197
[23] Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol, 2007, 49: 716-724
[24] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007,176: 527-541
[25] Zhang Y X, Lin Z X, Xia Q Z, Zhang M J, Zhang X L. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome, 2008, 51: 534-546
[26] Shappley Z W, Jenkins J N, Meredith W R, McCarty J C. An RFLP linkage map of upland cotton Gossypium hirsutum L. Theor Appl Genet, 1998, 97: 756-761
[27] Ulloa M, Meredith W R Jr, Shappley Z W, Kahler A L. RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet, 2002, 104: 200-208
[28] Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton Gossypium hirsutum L. Euphytica, 2005, 144: 91-99
[29] Lin Z X, Zhang Y X, Zhang Y X, Guo X P. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009, 166: 35-45
[30] Jiang C X, Wright R J, El-Zik K, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium cotton. Proc Natl Acad Sci USA, 1998, 95: 1419-1424
[31] Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton Gossypium. Theor Appl Genet, 2003,108: 280-291
[32] Lin Z X, He D H, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J M. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180-187
[33] Paterson A H, Brubaker C, Wende J F. A rapid method for extraction of cotton Gossypium spp. genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127
[34] Stephens S G. The genetics of ‘‘Corky’’. The New World alleles and their possible role as an interspecific isolating mechanism. J Genetics, 1946, 47: 150-161
[35] Song X-L(宋宪亮), Sun X-Z(孙学振), Zhang T-Z(张天真). Segregation distortion and its effect on genetic mapping in plants. J Agric Biotech (农业生物技术学报), 2006, 14: 286-292 (in Chinese with English abstract)
[36] Schwemmle J. Selective fertilization in Oenothera. Adv Genet, 1968, 14: 225-324
[37] Gadish I and Zamir D. Differential zygotic abortion in an interspecific Lycopersicon cross. Genome, 1986, 29: 156-159
[38] Lyttle T W. Segregation distorters. Annu Rev Genet, 1991, 25: 511-557
[39] Faris J D, Laddomada B, Gill B S. Molecular mapping segregation distortion loci in Aegilops tauschii. Genetics, 1998, 149:319-327
[40] Kumar S, Gill B S, Faris J D. Identification and characterization of segregation distortion loci along Chromosome 5B in tetraploid wheat. Mol Genet Genomics, 2007,278: 187-196
[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[9] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[10] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[11] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[12] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[13] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[14] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!