Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (4): 602-611.doi: 10.3724/SP.J.1006.2010.00602
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
KU Li-Xia,SUN Zhao-Hui,WANG Cui-Ling,ZHANG Jun,ZHANG Wei-Qiang,CHEN Yan-Hui*
[1] Piperno D R, Flannery K V. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA, 2001, 98: 2101-2103 [2] Gouesnard B, Rebourg C, Welcker C, Charcosset A. Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genet Resour Crop Evol, 2002, 49: 471-481 [3] Holland J B, Goodman M M. Combining ability of tropical maize accessions with U.S. germplasm. Crop Sci, 1995, 35: 767-776 [4] Chen Y-H(陈彦惠), Wu L-C(吴连成), Wu J-Y(吴建宇). Identification of tropical, subtropical populations of maize in different ecological conditions of two latitudes. Sci Agric Sin (中国农业科学), 2000, 33(1): 40-48 (in Chinese with English abstract) [5] Chen Y-H(陈彦惠), Wang L-M(王利明), Dai J-R(戴景瑞). Potential of germplasm improvement using tropical, subtropical inbred lines for Chinese temperate germplasms of maize. J China Agric Univ (中国农业大学学报), 2000, 5(1): 50-57 (in Chinese with English abstract) [6] Zhang S-H(张世煌), Shi D-Q(石德权), Xu J-S(徐家舜), Kang J-W(康继伟), Wang L-M(汪黎明), Yang Y-F(杨引福). Effects of mass selection on the adaptive improvement of exotic quality protein maize populations: II. Correlated responses. Acta Agron Sin (作物学报), 1995, 21(5): 513-519 (in Chinese with English abstract) [7] Zhang S-H(张世煌), Shi D-Q(石德权), Xu J-S(徐家舜), Yang Y-F(杨引福),Kang J-W(康继伟), Wang L-M(汪黎明). Effects of mass selection on the adaptive improvement of exotic quality protein maize populations: I. Direct response to selection for early silking. Acta Agron Sin (作物学报), 1995, 21(3): 271-280 (in Chinese with English abstract) [8] Ellis R H, Sumerfield R J, Edmeades G O. Photoperiod, temperature, and the interval from tassel initiation to emergence of maize. Crop Sci, 1992, 32: 398-403 [9] Ellis R H, Sumerfield R J, Edmeades G O. Photoperiod, temperature, and the interval from sowing initiation to emergence of maize. Crop Sci, 1992, 32: 1225-1232 [10] Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci, 1993, 33: 1209-1216 [11] Aitken Y. The early maturing character in maize Zea-mays in relation to temperature and photoperiod. Zeitschrift fuer Ackerund Pflanzenbau, 1980, 149: 89-106 [12] Russell W K, Stuber C W. Effects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Sci, 1983, 23: 847-850 [13] Warrington I J, Kanemasu E T. Corn growth-response to temperature and photoperiod. 3. Leaf number. Agron J, 1983, 75: 762-766 [14] Veldboom L, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: 1. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7-16 [15] Wang C L, Cheng F F, Sun Z H. Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet, 2008, 117: 1129-1139 [16] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468 [17] Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639 [18] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349 [19] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln E S, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181 [20] Huang H(黄海), Luo Y-F(罗友丰), Chen Z-Y(陈志英). SPSS10.0 for Windows statistical analysis (SPSS10.0 for Windows统计分析). Beijing: Posts & Telecom Press, 2001. pp 19-395 (in Chinese) [21] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971 [22] Wang C-L(王翠玲). QTL Mapping and Analysis of Photoperiod Sensitivity Related Traits and Genetic Detection of Plant Height Heterosis in Maize. PhD Dissertation of Henan Agricultural University, 2008 (in Chinese with English abstract) [23] Moutiq R, Ribaut J M, Edmeades G O, Krakowsky M D, Lee M. Elements of genotype-environment interaction: genetic components of the photoperiod response in maize. In: Kang M S ed. Quantitative Genetics, Genomics and Plant Breeding. New York: CABI, 2002. pp 257-267 [24] Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis: An application in maize. Theor Appl Genet, 2006, 113: 206-224 [25] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169-2185 [26] Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci, 1993, 33: 1209-1216 [27] Presterl T, Ouzunova M, Schmidt W, Moller E M, Rober F K, Knaak C, Ernst K, Westhoff P, Geiger H H. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet, 2007, 114: 1059-1070 [28] Cheng F-F(程芳芳). QTL Mapping for the Relevant Traits of Photoperiod Sensitivity in Maize. MS Dissertation of Henan Agricultural University, 2007 (in Chinese with English abstract) [29] Bouchez A, Hospital F, Causse M, Gallais A, Charcosse A. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics, 2002, 162: 1945-1959 [30] Jiang C, Edmeades G O, Armstead I, Laffite H R, Hayward M D. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor Appl Genet, 1999, 99: 1106-1119 [31] Khairallah M M, Bohn M, Jiang C, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez-de-Leon D, Hoisington D A. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998, 117: 309-318 [32] Ribaut J M, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang C J. Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breed, 2007, 20: 15-29 [33] Yan J Q, Zhu J, He C X,Benmoussa M, Wu P. Quantitative trait loci analysis for development behavior of tiller number in rice (Oryza sarioa L.). Theor Appl Genet, 1998, 97: 267-274 [34] Liu Z-H(刘宗华), Xie H-L(谢惠玲), Wang C-L(王春丽), Tian G-W(田国伟), Wei X-Y(卫晓轶), Hu Y-M(胡彦民), Cui D-Q(崔党群). QTL analysis of plant height under N-stress and N-input at different stages in maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14(5): 845-851 (in Chinese with English abstract) [35] Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄宜勤), Zheng Y-L(郑用琏), Li J-S(李建生). Dynamic QTL analysis for plant height in different developing stages in maize. Chin Sci Bull (科学通报), 2003, 48(18): 1959-1964 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[5] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[6] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[7] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[8] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[9] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[10] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[11] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[12] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[13] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[14] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[15] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
|