Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (02): 245-255.doi: 10.3724/SP.J.1006.2012.00245
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Si-Long1,2,HUANG Jia-Quan1,LEI Yong1,REN Xiao-Ping1,WEN Qi-Gen1,CHEN Yu-Ning1,JIANG Hui-Fang1,YAN Li-Ying1,LIAO Bo-Shou1,*
[1]Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1993, 7: 957–970[2]Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670–684[3]Kennedy E. Sailing to Byzantlum. Annu Rev Biochem, 1992, 61: 1–8[4]Weselake R J, Taylor D C, Rahman M H, Shah S, Laroche A, McVetty P B, Harwood J L. Increasing the flow of carbon into seed oil. Biotechnol Adv, 2009, 27: 866–878[5]Kim H U, Li Y, Huang A H C. Ubiquitous and endoplasmic reticulum–located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073–1089[6]Bourgis F, Kader J C, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe T J. A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol, 1999, 120: 913–921[7]Knutzon D S, Lardizabal K D, Nelsen J S, Bleibaum J L, Davies H M, Metz J C. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiol, 1995, 109: 999–1006[8]Brown A P, Coleman J, Tommey A M, Watson M D, Slabas A R. Isolation and characterization of a maize cDNA that complements a 1-acyl-sn-glycerol-3-phosphate acyltaransferase mutant of Escherichia coli and encodes a protein which similarities to other acyltransferases. Plant Mol Biol, 1994, 26: 211–223[9]Taylor D C, Francis T, Lozinsky S, Hoffman T, Giblin M, Marillia E F. Cloning and characterization of a constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L. Open Plant Sci J, 2010, 4: 7–17[10]Roscoe T J. Identification of acyltransferases controlling triacylglycerol biosynthesis in oilseeds using a genomics-based approach. Eur J Lipid Sci Technol, 2005, 107: 256–262[11]Hares W, Frentzen M. Substrate specificities of the membrane-bound and partially purified microsomal acyl-CoA: 1-acylglycerol-3-phosphate acyltransferase from etiolated shoots of Pisum satirum (L.). Planta, 1991, 185: 124–131[12]Kim H U, Huang A H C. Plastid lysophosphatidyl acytransferase is essential for embryo development in Arabidopsis. Plant Physiol, 2004, 134: 1206–1216[13]Löhden I, Frentzen M. Triacylglycerol biosynthesis in developing seeds of Tropaeolum majus L. and Limnanthes douglasii R. Br. Planta, 1992, 188: 215–224[14]Bernertha R, Frentzena M. Utilization of erucoyl-CoA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis. Plant Sci, 1990, 67: 21–28[15]Somerville C R, Browse J, Jaworski J G, Ohlrogge J B. Lipids. In: Buchanan B B, Gruissem W, Jones R L, eds. Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologists, 2000. pp 456–527[16]Zou J, Katavic V, Giblin E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 1997, 9: 909–923[17]Lavia G I, Fernández A. Genome size in wild and cultivated peanut germplasm. Plant Syst Evol, 2008, 272: 1–10[18]Kapustin Y, Souvorov A, Tatusova T, Lipman D. Splign: algorithms for computing spliced alignments with identification of paralogs. Biology Direct, 2008, 3:20[19]Marchler-Bauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Lu F, Marchler G H, Mullokandov M, Omelchenko M V, Robertson C L, Song J S, Thanki N, Yamashita R A, Zhang D, Zhang N, Zheng C, Bryant S H. CDD: a conserved domain database for the functional annotation of proteins. Nucl Acids Res, 2011, 39: 225–229[20]Luo M, Dang P, Bausher B M, Holbrook C C, Lee R D, Lynch R E, Guo B Z. Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathological, 2005, 95: 381–387[21]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402–408[22]Yu B, Wakao S, Fan J, Benning C. Loss of plastic lysophosphatidic acid acyltransferase cause embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503–510[23]Frentzen M. Biosynthesis and desaturation of the different diacylglycerol moieties in higher plants. Plant Physiol, 1986, 124: 193–209[24]Lewin T M, Wang P, Coleman R A. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 1999, 38: 5764–5771[25]Heath R J, Rock C O. A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol, 1998, 180: 1425–1430[26]Leung D W. The structure and functions of human lysophosphatidic acid acyltransferases. Frontiers in Bioscience, 2001, 6: 944–953[27]Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms. Ann Bot, 1995, 76: 113–176[28]Guo B, Chen X, Dang P, Scully B T, Liang X, Holbrook C C, Yu J, Culbreath A K. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol, 2008, 8:12[29]Cao Y Z, Oo K C, Huang A H C. Lysophosphatidate acyltransferase in the microsomes from maturing seeds of meadowfoam (Limnanthes alba). Plant Physiol, 1990, 94: 1199–1206[30]Laurant P, Huang A H C. Organ and development specific acyl CoA lysophosphatidate acyltransferase in palm and meadowfoam. Plant Physiol, 1992, 99: 1711–1715[31]Chen S-L(陈四龙), Li Y-R(李玉荣), Xu G-Z(徐桂真), Cheng Z-S(程增书). Simulation on oil accumulation characteristics in different high-oil peanut varieties. Acta Agron Sin (作物学报), 2008, 34(1): 142−149 (in Chinese with English abstract)[32]Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B. Arabidopsis genes in-volved in acyl lipid metabolism. A 2003 census of the candi-dates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 2003, 132: 681–697[33]Bi Y P, Liu W, Xia H, Su L, Zhao C Z, Wan S B, Wang X J. EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Genome, 2010, 53: 832–839[34]Payton P, Kottapalli K R, Rowland R, Faircloth W, Guo B, Burow M, Puppala N, Gallo M. Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC genomics, 2009, 10: 265[35]Zhu S Q, Zhao H, Zhou R, Ji B H, Dan X Y. Substrate selectivity of glycerol-3-phosphate acyl transferase in rice. J Integr Plant Biol, 2009, 51: 1040–1049[36]Sun C, Cao Y Z, Huang A H C. Acyl Coenzyme A preference of the glycerol phosphate pathway in the microsomes from the maturing seeds of palm, maize, and rapeseed. Plant Physiol, 1988, 88: 56–60 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[5] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[6] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[7] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[8] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[9] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[10] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[11] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[12] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[13] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[14] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[15] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
|