Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (04): 589-595.doi: 10.3724/SP.J.1006.2012.00589

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Chromosome Location and Molecular Mapping of Powdery Mildew Resistance Gene PmAS846 Originated from Wild Emmer (Triticum turgidum var. dicoccoides)

XUE Fei1,WANG Chang-You1,ZHANG Li-Hua2,ZHANG Hong1,LI Hao1,WANG Ya-Juan1,LIU Xin-Lun1,JI Wan-Quan1,*   

  1. 1 College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; 2 Seed Technology Extension Station of Neixiang Country in Henan Province, Neixiang 474350, China
  • Received:2011-08-08 Revised:2011-12-19 Online:2012-04-12 Published:2012-02-14
  • Contact: 王长有, E-mail: chywang2004@126.com; 吉万全, E-mail: jiwanquan2003@126.com

Abstract: Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important diseases of wheat (Triticum aestivum L.) worldwide. Wheat relativesare important donors of resistance genes against this disease in wheat breeding program. The common wheat line N9738 is highly resistant to Bgt isolate E09 and Shaanxi prevailing races at both seedling and adult plant stages. The PmAS846 gene in line N9738 was derived from wild emmer (Triticum turgidum var. dicoccoides) accession As846. Genetic analysis of an F2 population and their F3 families, developed from the cross between N9738 and a susceptible common wheat cultivar Huixianhong, indicated that N9738 carries one dominant resistance gene. A set of common wheat nullisomic (monosomic) lines were used to analyze the chromosomal location of PmAS846. The results revealed that PmAS846 was located on wheat chromosome 5B. Microsatellite markers on wheat chromosome 5B were used to map the gene using bulked segregant analysis. Eleven microsatellite markers were used to construct a linkage map for the gene, and two markers, Xgpw3191 and Xfcp1, ?anking PmAS846 location at 7.3 and 1.8 cM, respectively. Amplification of 5B chromosome deletion lines of Chinese Spring with the flanking markers mapped PmAS846 on chromosome 5BL bin 0.75–0.76. Based on expressed sequence tags (ESTs) information mapped on chromosome 5BL bin 0.75–0.76, we identified EST-derived sequence tagged site (STS) markers BF202652 and BF482522 to be closely linked to PmAS846 with genetic distance of 5.1 cM both. These markers can be used in fine mapping of PmAS846 and marker-assisted selection.

Key words: Powdery mildew, Wild emmer, Resistance gene, Chromosome location, Molecular markers

[1]Huang X, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica, 2004, 137: 203-223

[2]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155-1166

[3]Perugini L D, Murphy J P, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2008, 116: 417-425

[4]He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173-1180

[5]Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet, 2011, 123: 1099-1106

[6]Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H. Pm23: A new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205-1212

[7]Xie W, Nevo E. Wild emmer. genetic resources, gene mapping and potential for wheat improvement. Euphytica, 2008, 164: 603-614

[8]Özkan H, Willcox G, Graner A, Salamini F, Kilian B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol, 2010, 58: 11-53

[9]Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53: 57-60

[10]Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP based mapping. Euphytica, 2000, 115: 121-126

[11]Liu Z, Sun Q, Ni Z, Nevo E, Yang T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123: 21-29

[12]Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet, 2008, 117: 135-142

[13]Li G, Fang T, Xie C, Yang T, Nevo E. Molecular characterization of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 531-539

[14]Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q. 2009. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 119: 223-230

[15]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E, Anderson O D, Akhunov E D, Dvorak J, Linkiewicz A M, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis C E, Greene R A, Kantety R, La Rota C M, Munkvold J D, Sorrells S F, Sorrells M E, Dilbirligi M, Sidhu D, Erayman M, Randhawa H S, Sandhu D, Bondareva S N, Gill K S, Mahmoud A A, Ma X F, Miftahudin, Gustafson J P, Conley E J, Nduati V, Gonzalez-Hernandez J L, Anderson J A, Peng J H, Lapitan N L V, Hossain K G, Kalavacharla V, Kianian S F, Pathan M S, Zhang D S, Nguyen H T, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Gill B S. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701-712

[16]Qin B, Cao A, Wang H, Chen T, You F M, Liu Y, Ji J, Liu D, Chen P, Wang X E. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet, 2011, 123: 207-218

[17]Wang C-Y(王长有) Ji W-Q(吉万全), Zhang G-S(张改生), Wang Q-Y(王秋英), Cai D-M(蔡东明), Xue X-Z(薛秀庄). SSR markers and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163-166 (in English with Chinese abstract)

[18]Sheng B-Q(盛宝钦). Scoring powdery mildew with infection type at wheat seedling stage. Plant Prot (植物保护), 1988, (1): 49 (in Chinese)

[19]Saari E E, Prescott J M. A scale for appraising the foliar intensity of wheat diseases. Plant Dis Rep, 1975, 59: 377-380

[20]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018

[21]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109:1105-1114

[22]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M-Hln, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[23]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)

[24]Sears E R. The aneuploids of common wheat. Mol Agric Exp Stn Res Bull, 1954, 572: 1-58

[25]Hsam S L K, Lapochkina I F, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 2003, 133: 367-370

[26]Zeller F J, Kong L, Hartl L, Mohler V, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 7. Gene Pm29 in line Pova. Euphytica, 2002, 123: 187-194

[27]Peusha H, Enno T, Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas, 2000, 132: 29-34

[28]Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in Chinese wheat (Triticum aestivum L. em. Thell.) landraces Xiaobaidong and Fuzhuang 30. Genet Breed, 2000, 54: 311-317

[29]Faris J, Anderson J, Francl L, Jordahl J. Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology, 1996, 86: 459-463

[30]Faris J D, Haen K M, Gill B S. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics, 2000, 154:823-835

[31]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463: 763-768

[32]Linkiewicz A M, Qi L L, Gill B S, Ratnasiri A, Echalier B, Chao S, Lazo G R, Hummel D D, Anderson O D, Akhunov E D, Dvorak J, Pathan M S, Nguyen H T, Peng J H, Lapitan N L V, Miftahudin, Gustafson J P, La Rota C M, Sorrells M E, Hossain K G, Kalavacharla V, Kianian S F, Sandhu D, Bondareva S N, Gill K S, Conley E J, Anderson J A, Fenton R D, Close T J, McGuire P E, Qualset C O, Dubcovsky J. A 2500-locus bin map of wheat homoeologous group 5 provides insights on genedistribution and colinearity with rice. Genetics, 2004, 168: 665-676

[33]Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 1613-1621
[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[3] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[4] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[5] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[6] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[7] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[8] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[9] WEN Jing, SHEN Yan-Qi, HAN Si-Ping, XING Yue-Xian, ZHANG Ye, WANG Zi-Yu, LI Shi-Jie, YANG Xiao-Hong, HAO Dong-Yun, ZHANG Yan. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1303-1311.
[10] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[11] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[12] Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI. Cloning and analysis of candidate gene resistant to SC3 in soybean [J]. Acta Agronomica Sinica, 2019, 45(12): 1822-1831.
[13] ZHANG An-Ning,LIU Yi,WANG Fei-Ming,XIE Yue-Wen,KONG De-Yan,NIE Yuan-Yuan,ZHANG Fen-Yun,BI Jun-Guo,YU Xin-Qiao,LIU Guo-Lan,LUO Li-Jun. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line [J]. Acta Agronomica Sinica, 2019, 45(11): 1764-1769.
[14] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[15] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!