Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (05): 935-942.doi: 10.3724/SP.J.1006.2013.00935
• RESEARCH NOTES • Previous Articles Next Articles
GAO Qing-Hua1,MENG Yi-Jiang1,ZHANG Cui1,JIA Meng1,LIU Zhao1,HOU Ming-Ming1,JIN De-Min2,LI Xue-Jiao1,NIU Dong-Dong1,MIAO Liu-Yang1,GUO Le-Qun2,DOU Shi-Juan1,LIU Li-Juan1,LI Li-Yun1,ZHAI Wen-Xue2,LIU Guo-Zhen1,*
[1]Oatway L, Vasanthan T, Helm J H. Phytic acid. Food Rev Int, 2001, 17: 419–431[2]Lott J N A, Ockenden I, Raboy V, Batten G D. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res, 2000, 10: 11–33[3]Reddy N R, Pierson M D, Sathe S K, Salunlche D K. Phytates in Cereals and Legumes. Florida: CRC Press, 1989[4]O'Dell B L, De Boland A R, Koirtyohann S R. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem, 1972, 20: 718–723[5]Paik I K. Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production. Asian Austral J Anim Sci, 2001, 14: 384–394[6]Correll D L. The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual, 1998, 27: 261–266[7]Hart M R, Quin B F, Nguyen M L. Phosphorus runoff from agricultural land and direct fertilizer effects. J Environ Qual, 2004, 33: 1954–1972[8]Reddy K R, Kadlec R H, Flaig E, Gale P M. Phosphorus retention in streams and wetlands: a review. Crit Rev Env Sci Tec, 1999, 29: 83–146[9]Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol, 2000, 250: 133–167[10]Lopez H W, Leenhardt F, Coudray C, Remesy C. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Tech, 2002, 37: 727–739[11]Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski M C, Shi J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Res, 2008, 17: 633–643[12]Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T, Murthy P P, Sheridan W F, Ertl D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol, 2000, 124: 355–368[13]Pilu R, Panzeri D, Gavazzi G, Rasmussen S K, Consonni G, Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet, 2003, 107: 980–987[14]Guttieri M, Bowen D, Dorsch J A, Raboy V, Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci, 2004, 44: 418–424[15]Larson S R, Rutger J N, Young K A, Raboy V. Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci, 2000, 40: 1397–1405[16]Wilcox J R, Premachandra G S, Young K A, Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci, 2000, 40: 1601–1605[17]Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 2007, 25: 930–937[18]Cerino Badone F, Amelotti M, Cassani E, Pilu R. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize. J Hered, 2012, 103: 598–605[19]Shi J, Wang H, Hazebroek J, Ertl D S, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J, 2005, 42: 708–719[20]Bregitzer P, Raboy V. Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci, 2006, 46: 1318–1322[21]Oltmans S E, Fehr W R, Welke G A, Raboy V, Peterson K L. Agronomic and seed traits of soybean lines with low–phytate phosphorus. Crop Sci, 2005, 45: 593–598[22]Pilu R, Panzeri D, Cassani E, Cerino Badone F, Landoni M, Nielsen E. A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity, 2009, 102: 236–245[23]Shukla S, VanToai T T, Pratt R C. Expression and nucleotide sequence of an INS (3) P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.). J Agric Food Chem, 2004, 52: 4565–4570[24]Shi J, Wang H, Wu Y, Hazebroek J, Meeley R B, Ertl D S. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol, 2003, 131: 507–515[25]Israel D W, Kwanyuen P, Burton J W. Genetic variability for phytic acid phosphorus and inorgaic phosphorus in seeds of soybeans in maturity groups V, VI, and VII. Crop Sci, 2006, 46: 67–71[26]Xu X H, Zhao H J, Liu Q L, Frank T, Engel K H, An G, Shu Q Y. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet, 2009, 119: 75–83[27]Feng X, T. Yoshida K. Molecular approaches for producing low-phytic-acid grains in rice. Plant Biotechnol, 2004, 21: 183–189[28]Kuwano M, Mimura T, Takaiwa F, Yoshida K T. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J, 2009, 7: 96–105[29]Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida K. Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed, 2006, 18: 263–272[30]Kuwano M, Takaiwa F, Yoshida K T. Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles. Plant Cell Physiol, 2009, 50: 1387–1392[31]Kim S I, Andaya C B, Newman J W, Goyal S S, Tai T H. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet, 2008, 117: 1291–1301[32]Andaya C B, Tai T H. Fine mapping of the rice low phytic acid (Lpa1) locus. Theor Appl Genet, 2005, 111: 489–495[33]Kim S I, Andaya C B, Goyal S S, Tai T H. The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet, 2008, 117: 769–779[34]Wang X-Y(王雪艳), Wang Z-H(王忠华), Mei S-F(梅淑芳), Hong J(洪隽), Shu Q-Y(舒庆尧), Wu D-X(吴殿星). Brief report on screening maize mutants with high inorganic phosphorus and low phytic acid content. Acta Agric Nucl Sin (核农学报), 2006, 20(1): 404–408 (in Chinese with English abstract)[35]Wang H(王晖), Chen J-T(陈景堂), Liu L-J(刘丽娟), Chen H(陈浩), Liu G-Z(刘国振). Identification of maize low phytic acid inbred lines and primary study of its genetic mechanism. Acta Agron Sin (作物学报), 2008, 34(1): 95–99 (in Chinese with English abstract)[36]Ma L(马磊), Li P(李盼), Chen Z(陈哲), Zhao Y-F(赵永锋), Zhu L-Y(祝丽英), Huang Y-Q(黄亚群), Chen J-T(陈景堂). Genetic analysis and identification of maize (Zea mays L.) low phytic acid inbred lines. Sci Agric Sin (中国农业科学), 2011, 44(3): 447–455 (in Chinese with English abstract)[37]Pilu R, Landoni M, Cassani E, Doria E, Nielsen E. The maize mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci, 2005, 45: 2096–2105[38]Raboy V. Low-phytic-acid grains. Food Nutr Bull, 2000, 21: 423–427[39]Dorsch J A, Cook A, Young K A, Anderson J M, Bauman A T, Volkmann C J, Murthy P P, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 2003, 62: 691–706[40]Chen P S, Toribara T Y, Warner H. Microdetermination of phosphorus. Anal Chem, 1956, 28: 1756–1758[41]Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: version II. Plant Mol Biol Rep, 1983, 1: 19–21[42]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174[43]Strother S. Homeostasis in germinating seeds. Ann Bot, 1980, 45: 217–218[44]Ye J-C(叶金才). Practices and thoughts on breeding of good maize inbreds and high heterosis hybrids using exogenous germplasm. Shandong Agric Sci (山东农业科学), 2000, (3): 11–13 (in Chinese with English abstract)[45]Meng Z-D(孟昭东), Guo Q-F(郭庆法), Wang L-M(汪黎明), Liu Z-X(刘治先), Zhang F-J(张发军), Ding Z-H(丁照华), Han J(韩静), Zhang Q-W(张庆伟). Strategies used in the breeding process of high-yield maize hybrid Ludan 981. J Maize Sci (玉米科学), 2003, 11(3): 54–56 (in Chinese with English abstract) |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[8] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[9] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[10] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[11] | MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758. |
[12] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[13] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[14] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[15] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
|