[1]Broughton W J, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.)-model food legumes. Plant Soil, 2003, 252: 55–128
[2]FAOSTAT. Statistics Database. Rome Available at: http://faostat.fao.org/, 2013
[3]Franca M G C, Thi A T O, Pimentel C, Rossiello R O P, Fodil Y Z, Laffray D. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ Exp Bot, 2000, 43: 227–237
[4]Singh S P. Broadening the genetic base of common bean cultivars: a review. Crop Sci, 2001, 41: 1659–1675
[5]Jones P G, Thornton P K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environ Change, 2003, 13: 51–59
[6]Sadeghipour O, Aghaei P. Response of common bean (Phaseolus vulgaris L.) to exogenous application of salicylic acid (SA) under water stress conditions. Adv Environ Biol, 2012, 6: 1160–1168
[7]Cortés A J, This D, Chavarro C, Madriñán S, Blair M W. Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2012, 125: 1069–1085
[8]Velikova V, Yordanov I, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 2000, 38: 171–186
[9]Shao H B, Chu L Y, Jaleel C A, Manlvannan P, Panneerselvam R, Shao M A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and ecoenvironment in arid regions of the globe. Crit Rev Biotech, 2009, 29: 131–151
[10]Simsek M, Comlekcioglu N, Ozturk I. The effects of the regulated deficit irrigation on yield and some yield components of common bean (Phaseolus vulgaris L.) under semi-arid conditions. Afr J Biotechnol, 2011, 10: 4057–4064
[11]Rosales M A, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias A A. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem, 2012, 56: 24–34
[12]Wentworth M, Murchie E H, Gray J E, Villegas D, Pastenes C, Pinto M, Horton P. Differential adaptation of two varieties of common bean to abiotic stress. J Exp Bot, 2006, 57: 699–709
[13]Mohamed M F, Schmitz-Eiberger N, Keutgen N, Noga G. Comparative drought postponing and tolerance potentials of two tepary bean lines in relation to seed yield. Afr Crop Sci J, 2005, 13: 49–60
[14]王述民, 张亚芝, 魏淑红. 普通菜豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 50–52
Wang S M, Zhang Y Z, Wei S H. Descriptors and data standard for common bean (Phaseolus vulgaris L.). Beijing: China Agriculture Press, 2006. pp 50–52 (in Chinese)
[15]张仁和, 郭东伟, 张兴华, 路海东, 刘建超, 李凤艳, 郝引川, 薛吉全. 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012, 32: 1884–1890
Zhang R H, Guo D W, Zhang X H, Lu H D, Liu J C, Li F Y, Hao Y C, Xue J Q. Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agron Sin, 2012, 38: 1884–1890 (in Chinese with English abstract)
[16]徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响. 中国水稻科学, 2013, 27: 280–286
Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P. Effect of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties. Chin J Rice Sci, 2013, 27: 280–286 (in Chinese with English abstract)
[17]邱鹏程, 张闻博, 李灿东, 蒋洪蔚, 刘春燕, 范冬梅, 曾庆力, 胡国华, 陈庆山. 利用选择导入系分析大豆芽期和苗期耐旱性的遗传重叠. 作物学报, 2011, 37: 477–483
Qiu P C, Zhang W B, Li C D, Jiang H W, Liu C Y, Fan D M, Zeng Q L, Hu G H, Chen Q S. Genetic overlap of drought-tolerance loci between germination stage and seedling stage analyzed using introgression lines in soybean. Acta Agron Sin, 2011, 37: 477–483 (in Chinese with English abstract)
[18]张志良. 植物生理学实验指导. 北京: 高等教育出版社, 1990. pp 208–209, 125–126, 103–104, 100–101, 218–219, 227–229
Zhang Z L. Handbook of plant physiology experiment. Beijing: Higher Education Press, 1990. pp 208–209, 125–126, 103–104, 100–101, 218–219, 227–229 (in Chinese)
[19]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003. pp 213–214
Li H S. Principle and technology of plant in physiology biochemical experiment. Beijing: Higher Education Press, 2003, pp 213–214 (in Chinese)
[20]Acosta-Gallegos J A, Adams M W. Plant traits and yield stability of dry bean (Phaseolus vulgaris L.) cultivars under drought stress. J Agric Sci, 1991, 117: 213–219
[21]Ramirez-Vallejo P, Kelly J D. Traits related to drought resistance in common bean. Euphytica, 1998, 99: 127–136
[22]Amede T, Schubert S, Stahr K. Mechanisms of drought resistance in grain legumes: I. Osmotic adjustment. Ethiopian J Sci, 2003, 26: 37–46
[23]Acosta-Gallegos J A, Kohashi-Shibata J. Effect of water stress on growth and yield of indeterminate dry beans (Phaseolus vulgaris L.) cultivar. Field Crops Res, 1989, 20: 81–93
[24]Cuéllar-Ortiz S M, Arrieta-Montiel M P, Acosta-Gallegos J, Covarrubias A A. Relationship between carbohydrate partioning and drought resistance in common bean. Plant Cell Environ, 2008, 31: 1399–1409
[25]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560
[26]Bota J, Flexas J, Medrano H. Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytol, 2004, 162: 671–681
[27]云建英, 杨甲定, 赵哈林. 干旱和高温对植物光合作用的影响机制研究进展. 西北植物学报, 2006, 26: 641–648
Yun J Y, Yang J D, Zhao H L. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis. Acta Bot Boreal-Occident Sin, 2006, 26: 641–648 (in Chinese with English abstract)
[28]吴永美, 吕炯章, 王书建, 李润植. 植物抗旱生理生态特性研究进展. 杂粮作物, 2008, 28(2): 90–93
Wu Y M, Lu J Z, Wang S J, Li R Z. Research progress on eco-physiological responses of plants to drought conditions. Rain Fed Crops, 2008, 28(2): 90–93 (in Chinese)
[29]Turkan I, Bor M, Ozdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci, 2005, 168: 223–231
[30]金怡, 刘合芹, 汪得凯, 陶跃之. 植物光呼吸分子机制研究进展. 中国农学通报, 2011, 27(3): 232–236
Jing Y, Liu H Q, Wang D K, TaoY Z. The progress of molecular mechanisms of photorespiration in plants. Chin Agric Sci Bull, 2011, 27(3): 232–236
[31]杜伟莉, 高杰, 胡富亮, 郭德林, 张改生, 张仁和, 薛吉全. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013, 39: 530–536
Du W L, Gao J, Hu F L, Guo D L, Zhang G S, Zhang R H, Xue J Q. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agron Sin, 2013, 39: 530–536 |