Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1760-1770.doi: 10.3724/SP.J.1006.2020.04079

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.]

ZHANG Hai-Yan1(), WANG Bao-Qing1(), FENG Xiang-Yang2, LI Guang-Liang3, XIE Bei-Tao1, DONG Shun-Xu1, DUAN Wen-Xue1,*(), ZHANG Li-Ming4,*()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences / Scientific Observation and Experimental Station of Tubers and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs / Shandong Engineering Laboratory of Featured Crops, Jinan 250100, Shandong, China
    2 Agricultural and Rural Bureau of Changle, Changle 262400, Shandong, China
    3 Zhangzhuang Town Agrotechnical Station of Zoucheng City, Zoucheng 273507, Shandong, China
    4 Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2020-03-27 Accepted:2020-07-02 Online:2020-11-12 Published:2020-07-14
  • Contact: Wen-Xue DUAN,Li-Ming ZHANG E-mail:zhang_haiyan02@163.com;76853722@qq.com;duanwenxue2010@163.com;zhanglm11@sina.com
  • Supported by:
    This study was supported by the Shandong Province Modern Agricultural Technology System Tubers and Root Crops Innovation Team(SDAIT-16-09);the China Agriculture Research System(CARS-10-B08);the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016A05);and the Major Agricultural Application Technological Innovation Project in Shandong Province(SD2019ZZ022)

Abstract:

Field experiments were conducted using two sweet potato cultivars (Jishu 21, a drought-tolerant cultivar, and Jizishu 1, a drought-sensitive cultivar) with four water treatments to investigate the effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.], including well-watered treatment during the whole growth period (WW, control), drought stress during the establishment stage (DS1), drought stress during the storage root initial stage (DS2), and drought stress during the storage root bulking stage (DS3). Drought stress resulted in significant decrease of fresh weight of storage roots in sweet potato. Compared with drought stress in different periods, drought stress during the establishment stage (DS1) decreased the fresh weight most. Compared between cultivars, drought-sensitive cultivar decreased the fresh weight most. The average in three years, compared with the control, the fresh weight of drought-tolerant cultivar (Jishu 21) and drought-sensitive cultivar (Jizishu 1) decreased 28.59% and 38.77% in DS1 treatment, respectively, while 25.20% and 33.50% in DS2 treatment, respectively and 14.55% and 19.56% in DS3 treatment, respectively. Drought stress resulted in significant decrease of biomass of storage roots in sweet potato. One hundred days after planting, compared with the control, the biomass of aboveground part of Jishu 21 in DS1, DS2, and DS3 decreased 32.68%, 20.79%, and 11.72%, respectively, while Jizishu 1 decreased 46.45%, 31.89%, and 18.43%, respectively. The biomass of underground part of Jishu 21 in DS1, DS2, and DS3 decreased 37.69%, 25.86%, and 10.67%, respectively, while Jizishu 1 decreased 54.34%, 33.48%, and 14.20%, respectively. Under drought stress, the relative water content of functional leaves decreased, and the content of soluble sugar, soluble protein, free amino acid and proline in functional leaves, fibrous roots and storage roots increased. The earlier the application of drought stress, the greater the decrease or increase. The effects of drought stress applied at early stages on osmotic adjustment could not be effectively recovered after re-watering, while the osmotic adjustment could be recovered to the control level after re-watering when drought stress was applied at later stage.

Key words: sweet potato, drought stress, activity of osmotic adjustment

Table 1

Relative soil water contents at different growth stages"

生长期
Growth stage
栽插后天数
Days from planting (d)
土壤相对含水量Relative soil water content (%)
WW DS1 DS2 DS3
发根分枝期Establishment stage 0-30 75±5 35±5 75±5 75±5
蔓薯并长期Storage root initial stage 30-60 75±5 75±5 35±5 75±5
快速膨大期Storage root bulking stage 60-90 75±5 75±5 75±5 35±5

Table 2

Effects of drought stress at different stages on fresh weight in sweet potato"

处理
Treatment
济薯21 Jishu 21 济紫薯1号 Jizishu 1
鲜薯产量
Fresh weight (kg hm-2)
比对照
Compared with CK (%)
鲜薯产量
Fresh weight (kg hm-2)
比对照
Compared with CK (%)
WW 14,084.29±425.30 a 12,091.02±450.74 a
DS1 10,057.41±359.92 c -28.59 7403.10±362.38 c -38.77
DS2 10,535.46±368.99 c -25.20 8040.26±371.05 c -33.50
DS3 12,034.76±389.41 b -14.55 9725.62±349.28 b -19.56

Table 3

Effects of drought stress at different stages on biomass of aboveground and underground parts in sweet potato"

品种
Variety
栽植后天数
Days after planting (d)
处理 Treatment
WW DS1 DS2 DS3
地上部生物量
Biomass of aboveground part (g plant-1)
济薯21
Jishu 21
40 156.47±26.53 a 101.58±22.84 b 150.85±27.02 a 153.95±24.68 a
60 536.65±24.25 a 289.13±21.31 c 457.06±20.26 b 537.19±20.69 a
80 697.55±24.15 a 446.87±21.87 d 534.30±22.74 c 607.51±21.34 b
100 738.86±27.77 a 497.41±23.48 d 585.23±20.14 c 652.23±21.65 b
济紫薯1号
Jizishu 1
40 156.28±21.84 a 89.08±20.69 b 150.20±21.37 a 155.60±23.56a
60 648.93±26.54 a 328.34±23.24 c 452.25±22.76 b 605.27±28.67 a
80 817.86±21.73 a 435.04±26.58 d 525.66±22.76 c 672.33±25.67 b
100 867.39±24.81 a 464.49±22.16 d 590.75±25.09 c 707.52±28.45 b
地下部生物量
Biomass of underground part (g plant-1)
济薯21
Jishu 21
40 14.23±1.26 a 8.25.±1.35 c 11.78±1.13 b 13.67±1.77 ab
60 29.94±1.36 a 21.19±1.09 c 26.15±1.68 b 31.68±1.96 a
80 89.46±2.76 a 56.07±3.87 d 68.42±1.86 c 80.87±1.96 b
100 137.50±4.89 a 85.67±3.15 d 101.94±4.06 c 122.83±3.04 b
济紫薯1号
Jizishu 1
40 13.73±2.46 a 6.73±1.07 c 10.44±1.84 b 13.97±1.58 a
60 34.03±1.56 a 16.97±1.26 c 22.02±2.77 b 31.39±2.67 a
80 68.36±3.24 a 35.30±3.68 d 49.21±3.37 c 61.64±3.24 b
100 118.50±3.25 a 54.11±3.12 d 78.83±5.98 c 101.67±5.06 b

Fig. 1

Effects of drought stress at different stages on relative water content of functional leaves in sweet potato JS21: Jishu 21; JZ1: Jizishu 1. Error bars show the standard deviations of three replicates. Treatments are the same as those given in Table 1."

Fig. 2

Effects of drought stress at different stages on content of soluble sugar, soluble protein, free amino acid, and proline of functional leaves in sweet potato JS21: Jishu 21; JZ1: Jizishu 1. Error bars show the standard deviations of three replicates. Treatments are the same as those given in Table 1."

Fig. 3

Effects of drought stress at different stages on content of soluble sugar, soluble protein, free amino acid, and proline of fibrous roots in sweet potato JS21: Jishu 21; JZ1: Jizishu 1. Error bars show the standard deviations of three replicates. Treatments are the same as those given in Table 1."

Fig. 4

Effects of drought stress at different stages on content of soluble sugar, soluble protein, free amino acid, and proline of storage roots in sweet potato JS21: Jishu 21; JZ1: Jizishu 1. Error bars show the standard deviations of three replicates. Treatments are the same as those given in Table 1."

[1] Babajide O O, Patrick O A, David M M, Sunette M L, Abe S G. Greenhouse and field evaluation of selected sweetpotato ( Ipomoea batatas(L.) Lam.) accessions for drought tolerance in South Africa. Am J Plant Sci, 2014,5:3328-3339.
[2] 张海燕, 段文学, 解备涛, 董顺旭, 汪宝卿, 史春余, 张立明. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018,44:126-136.
Zhang H Y, Duan W X, Xie B T, Dong S X, Wang B Q, Shi C Y, Zhang L M. Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato. Acta Agron Sin, 2018,44:126-136 (in Chinese with English abstract).
[3] Chowdhury S R, Singh R, Kundu D K, Antony E, Verma H N. Growth, dry-matter partitioning and yield of sweet potato ( Ipomoea batatas L.) as influenced by soil mechanical impedance and mineral nutrition under different irrigation regimes. Adv Hortic Sci, 2002,16:25-29.
[4] Villordon A Q, Labonte D, Firon N, Kfir Y, Pressman E, Schwartz A. Characterization of adventitious root development in sweetpotato. Hortscience, 2009,44:651-655.
[5] 李长志, 李欢, 刘庆, 史衍玺. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016,22:511-517.
Li C Z, Li H, Liu Q, Shi Y X. Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages. J Plant Nutr Fert, 2016,22:511-517 (in Chinese with English abstract).
[6] 杨阳, 申双和, 马绎皓, 王润元, 赵鸿. 干旱对作物生长的影响机制及抗旱技术的研究进展. 科技通报, 2020,36(1):8-15.
Yang Y, Shen S H, Ma Y H, Wang R Y, Zhao H. Advances in the effects of drought on crop growth and research on drought resistance techniques. Bull Sci Technol, 2020,36(1):8-15 (in Chinese with English abstract).
[7] 王一鸣, 汪湖, 龙胜举, 赵英鹏, 陈延, 贺忠群. 干旱胁迫对蒲公英渗透调节物质、酶保护系统及质膜水孔蛋白PIP2-3基因表达的影响. 华北农学报, 2017,32(4):85-90.
Wang Y M, Wang H, Long S J, Zhao Y P, Chen Y, He Z Q. Effects of drought stress on osmoregulation substances, enzyme protection system and expression of plasma membrane hole protein gene PIP2-3 in Taraxacum mongolicum Hand.-Mazz. Acta Agric Boreali-Sin, 2017,32(4):85-90 (in Chinese with English abstract).
[8] 蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响. 植物生态学报, 2008,32:491-500.
doi: 10.3773/j.issn.1005-264x.2008.02.029
Cai K Z, Wu X Z, Luo S M. Effects of water stress on osmolytes at different growth stage in rice leaves and roots. J Plant Ecol, 2008,32:491-500 (in Chinese with English abstract).
[9] 李春香, 王玮, 李德全. 长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响. 西北植物学报, 2001,21:924-930.
Li C X, Wang W, Li D Q. Effects of long-term water stress on osmotic adjustment and osmolytes in wheat roots and leaves. Acta Bot Boreali-Occident Sin, 2001,21:924-930 (in Chinese with English abstract).
[10] 张明生, 彭忠华, 谢波, 谈锋, 张启堂, 付玉凡, 杨春贤, 杨永华. 甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系. 中国农业科学, 2004,37:152-156.
Zhang M S, Peng Z H, Xie B, Tan F, Zhang Q T, Fu Y F, Yang C X, Yang Y H. Relationship between water loss rate of cutting leaves and osmotic regulators under water stress and drought resistance in sweet potato. Sci Agric Sin, 2004,37:152-156 (in Chinese with English abstract).
[11] 张明生, 谈锋, 张启堂. 快速鉴定甘薯品种抗旱性的生理指标及方法的筛选. 中国农业科学, 2001,34:260-265.
Zhang M S, Tan F, Zhang Q T. Physiological indices for rapid identification of sweet potato drought resistance and selection of methods. Sci Agric Sin, 2001,34:260-265 (in Chinese with English abstract).
[12] Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance: II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003,117:540-549.
doi: 10.1034/j.1399-3054.2003.00065.x pmid: 12675744
[13] Babita M, Maheswari M, Rao L M, Shanker A K, Rao D G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot, 2010,69:243-249.
doi: 10.1016/j.envexpbot.2010.05.006
[14] Yousifi N, Slama I, Ghnaya T, Savoure A, Abdelly C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. C R Biol, 2010,333:205-213.
pmid: 20338538
[15] 曹清河, 李雪华, 戴习彬, 唐君, 周志林, 赵冬兰, 张安. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida (Kunth) G. Don幼苗生理生化指标的影响. 西南农业学报, 2016,29:2536-2541.
Cao Q H, Li X H, Dai X B, Tang J, Zhou Z L, Zhao D L, Zhang A. Effects of drought simulated by PEG-6000 on seedling physiological and biochemical indexes of wild sweetpotato relative Ipomoea trifida (Kunth) G. Don. Southwest Chin J Agric Sci, 2016,29:2536-2541 (in Chinese with English abstract).
[16] 储凤丽, 刘亚军, 王文静, 胡启国, 杨爱梅. 干旱胁迫对甘薯活性氧代谢、渗透调节物质、SPAD及叶绿素荧光特性的影响. 中国农学通报, 2019,35(26):29-34.
Chu F L, Liu Y J, Wang W J, Hu Q G, Yang A M. Effects of drought stress on active oxygen metabolism, osmotic regulators, SPAD and chlorophyll fluorescence characteristics of sweet potato. Chin Agric Sci Bull, 2019,35(26):29-34 (in Chinese with English abstract).
[17] 杜伟莉, 高杰, 胡富亮, 郭德林, 张改生, 张仁和, 薛吉全. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013,39:530-536.
doi: 10.3724/SP.J.1006.2013.00530
Du W L, Gao J, Hu F L, Guo D L, Zhang G S, Zhang R H, Xue J Q. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agron Sin, 2013,39:530-536 (in Chinese with English abstract).
[18] 丁成伟, 钮福祥, 郭小丁, 华希新. 甘薯品种资源抗旱性鉴定研究. 河南农业科学, 1997, (10):3-5.
Ding C W, Niu F X, Guo X D, Hua X X. Identification on the drought resistance in sweet potato genetic resource. Henan Agric Sci, 1997, (10):3-5 (in Chinese with English abstract).
[19] 张明生, 谈峰, 张启堂. 快速鉴定甘薯品种抗旱性的生理指标及PEG浓度的筛选. 西南师范大学学报(自然科学版), 1999,24(1):73-80.
Zhang M S, Tan F, Zhang Q T. Physiological indices of rapid identification for sweet potato drought-resistance and selection of PEG concentration. J Southwest China Nor Univ (Nat Sci Edn), 1999,24(1):73-80 (in Chinese with English abstract).
[20] 江苏省农业科学院, 山东省农业科学院. 中国甘薯栽培学. 上海: 上海科学技术出版社, 1984. pp 51-56.
Jiangsu Academy of Agricultural Sciences, Shandong Academy of Agricultural Sciences. Chinese Sweetpotato Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1984. pp 51-56(in Chinese).
[21] 梁鹏, 邢兴华, 周琴, 韩亮亮, 田一丹, 张国正, 邢邯, 江海东. α-萘乙酸对干旱和复水处理下大豆幼苗生长和光合作用的影响. 大豆科学, 2011,30:50-55.
Liang P, Xing X H, Zhou Q, Han L L, Tian Y D, Zhang G Z, Xing H, Jiang H D. Effect of NAA on growth and photosynthetic characteristic of soybean seedling under drought and re-watering. Soybean Sci, 2011,30:50-55 (in Chinese with English abstract).
[22] 陈建勋, 王晓峰. 植物生理学实验指导(第2版). 广州: 华南理工大学出版社, 2006. pp 64-66.
Chen J X, Wang X F. Guidance of Plant Physiological Experiment 2nd edn. Guangzhou: South China University of Technology Publishers, 2006. pp 64-66(in Chinese).
[23] Lewthwaite S L, Triggs C M. Sweetpotato cultivar response to prolonged drought. Agron New Zeal, 2012,42:1-10.
[24] 张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选. 作物学报, 2019,45:419-430.
Zhang H Y, Xie B T, Wang B Q, Dong S X, Duan W X, Zhang L M. Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars. Acta Agron Sin, 2019,45:419-430 (in Chinese with English abstract).
[25] Sokoto M B, Sadiq K A. Productivity of sweet potato ( Ipomoea batatas L.) as influenced by water stress and variety in Sokoto Sudan Savannah, Nigeria. Int J Plant Soil Sci, 2016,12:1-9.
[26] 李欢, 陈雷, 王晨静, 赵习武, 陆国权. 4个观赏甘薯品种的抗旱性比较. 浙江农业学报, 2015,27:1945-1952.
Li H, Chen L, Wang C J, Zhao X W, Lu G Q. Evaluation of the drought tolerance of four ornamental sweetpotato cultivars. Acta Agric Zhejiang, 2015,27:1945-1952 (in Chinese with English abstract).
[27] 张海燕, 段文学, 董顺旭, 解备涛, 汪宝卿, 张立明. 苗期干旱胁迫条件下外源ABA对甘薯膜透性和抗氧化酶系统的影响. 华北农学报, 2018,33(2):177-187.
Zhang H Y, Duan W X, Dong S X, Xie B T, Wang B Q, Zhang L M. Effects of exogenous abscisic acid on membrane permeability and antioxidant system of sweetpotato at seedlings Stage under drought stress. Acta Agric Boreali-Sin, 2018,33(2):177-187 (in Chinese with English abstract).
[28] 吴巧玉, 何天久, 夏锦慧. 干旱胁迫对甘薯生理特性的影响. 贵州农业科学, 2013,41(6):52-54.
Wu Q Y, He T J, Xia J H. Effects of drought stress on physiological characteristics of sweet potato. Guizhou Agric Sci, 2013,41(6):52-54 (in Chinese with English abstract).
[29] 霍红, 张勇, 陈年来, 李彩霞, 高海宁. 干旱胁迫下五种荒漠灌木苗期的生理响应和抗旱评价. 干旱区资源与环境, 2010,25(1):185-189.
Huo H, Zhang Y, Chen N L, Li C X, Gao H N. Physiological response and evaluation of drought resistance about five desert shrubs under drought stress. J Arid Land Resour Environ, 2010,25(1):185-189 (in Chinese with English abstract).
[30] 许育彬, 程雯蔚, 陈越, 华千勇. 不同施肥条件下干旱对甘薯生长发育和光合作用的影响. 西北农业学报, 2007,16(2):59-64.
Xu Y B, Cheng W W, Chen Y, Hua Q Y. Effect of drought on growth and development and photosynthesis of sweet potato under different fertilization conditions. Acta Agric Boreali-Occident Sin, 2007,16(2):59-64 (in Chinese with English abstract).
[31] 孙哲, 史春余, 刘桂玲, 高俊杰, 柳洪鹃, 郑建利, 张鹏. 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异. 植物营养与肥料学报, 2016,22:1071-1078.
Sun Z, Shi C Y, Liu G L, Gao J J, Liu H J, Zheng J L, Zhang P. Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition. J Plant Nutr Fert, 2016,22:1071-1078 (in Chinese with English abstract).
[32] 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018,29:1943-1950.
Zhang H Y, Xie B T, Duan W X, Dong S X, Wang B Q, Zhang L M, Shi C Y. Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chin J Appl Ecol, 2018,29:1943-1950 (in Chinese with English abstract).
[33] 张明生, 谢波, 戚金亮, 谈锋, 张启堂, 杨永华. 甘薯植株形态、生长势和产量与品种抗旱性的关系. 热带作物学报, 2006,27(1):39-43.
Zhang M S, Xie B, Qi J L, Tan F, Zhang Q T, Yang Y H. Relationship of drought resistance of sweet potato with its plant type, growth vigour and yield under water stress. Chin J Trop Crops, 2006,27(1):39-43 (in Chinese with English abstract).
[34] 姜慧芳, 任小平. 干旱胁迫对花生叶片SOD活性和蛋白质的影响. 作物学报, 2004,30:169-174.
Jiang H F, Ren X P. The effect on SOD activity and protein content in groundnut leaves by drought stress. Acta Agron Sin, 2004,30:169-174 (in Chinese with English abstract).
[35] 张智猛, 宋文武, 丁红, 慈敦伟, 康涛, 宁堂原, 戴良香. 不同生育期花生渗透调节物质含量和抗氧化酶活性对土壤水分的响应. 生态学报, 2013,33:4257-4265.
doi: 10.5846/stxb201204100499
Zhang Z M, Song W W, Ding H, Ci D W, Kang T, Ning T Y, Dai L X. The responses of leaf osmoregulation substance and protective enzyme activity of different peanut cultivars to non-sufficient irrigation. Acta Ecol Sin, 2013,33:4257-4265 (in Chinese with English abstract).
[36] Mbinda W, Ombori O, Dixelius C, Oduor R. Xerophyta viscosa aldose reductase, XvAld1, enhances drought tolerance in transgenic sweetpotato. Mol Biotechnol, 2018,60:203-214.
pmid: 29423655
[37] Fan W J, Zhang M, Zhang H X, Zhang P. Improved tolerance to various abiotic stresses in transgenic sweet potato ( Ipomoea batatas) expressing betaine aldehyde dehydrogenase. PLoS One, 2012,7:e37344.
pmid: 22615986
[1] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[2] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[3] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[4] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[5] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[6] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[7] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[8] ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480.
[9] WANG Cui-Juan, CHAI Sha-Sha, SHI Chun-Yu, ZHU Hong, TAN Zhong-Peng, JI Jie, REN Guo-Bo. Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(2): 305-319.
[10] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[11] QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051.
[12] Yong-Chen LIU,Cheng-Cheng SI,Hong-Juan LIU,Bin-Bin ZHANG,Chun-Yu SHI. Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(3): 462-471.
[13] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[14] JIANG Zhong-Yu, TANG Li-Xue, LIU Hong-Juan, SHI Chun-Yu. Changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium application rates of sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1750-1759.
[15] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!