Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (08): 1350-1355.doi: 10.3724/SP.J.1006.2014.01350
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Li1,2,ZHANG Ming-Cai1,DU Ming-Wei1,TIAN Xiao-Li1,LI Zhao-Hu1,*
[1]Siebert J D, Stewart A M. Influence of plant density on cotton response to mepiquat chloride application. Agron J, 2006, 98: 1634–1639[2]Ren X, Zhang L, Du M, Eversc J B, Werf W, Tian X, Li Z. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Res, 2013, 149: 1–10[3]Reddy V R, Baker D N, Hodges H F. Temperature and mepiquat chloride effects on cotton canopy architecture. Agron J, 1990, 82: 190–195[4]Reddy A R, Reddy K R, Hodges H F. Mepiquat chloride (PIX) induced changes in photosynthesis and growth of cotton. Plant Growth Regul, 1996, 20: 179–183[5]Zhao D, Oosterhuis D M. Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. J Plant Growth Regul, 2000, 19: 415–422[6]Gonias E D, Oosterhuis D M, Bibi A C. Cotton radiation use efficiency response to plant growth regulators. J Agric Sci, 2012, 150: 595–602[7]Rademacher W. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Mol Biol, 2000, 51: 501–531[8]Dennis D T, Upper C D, West C A. An enzymic site of inhibition of gibberellin biosynthesis by Amo 1618 and other plant growth retardants. Plant Physiol, 1965, 40: 948–952[9]Shechter I, West C A. Biosynthesis of Gibberellins. IV. Biosynthesis of cyclic diterpenes from trans-geranylgeranyl pyrophosphate. J Biol Chem, 1969, 244: 3200–3209[10]Smith M W, Yamaguchi S, Ait-Ali T, Kamiya Y. The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiol, 1998, 118: 1411–1419[11]Silverstone A L, Chang C, Krol E, Sun T P. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J, 1997, 12: 9–19[12]Koornnef M, van der Veen J H. Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet, 1980, 58:257–263[13]Sun T, Kamiya Y. The Arabidopsis GAl locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell, 1994, 6: 1509–1518[14]Reddy K R, Kakani V G, Zhao D, Mohammed A R, Gao W. Cotton responses to ultraviolet-B radiation: experimentation and algorithm development. Agr Forest Meteorol, 2003, 120: 249–265[15]何钟佩. 农作物化学控制实验指导. 北京: 北京农业大学出版社, 1993. pp 36–39He Z P. Experimental guide of chemical control of crops. Beijing: Beijing Agricultural University Press, 1993. pp 36–39 (in Chinese)[16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25: 402–408[17]Barbosa L M, Castro P R C. Comparison between concentrations and application time of mepiquat chloride, chlorocholine chloride and ethephon in cotton (Gossypium hirsutum L. cv. IAC-17). Planta Daninha, 1983, 6: 1–10[18]Fernández C J, Cothren J T, McInnes K J. Partitioning of biomass in well-watered and water-stressed cotton plants treated with mepiquat chloride. Crop Sci, 1991, 31:1224–1228[19]陈吟, 张明才, 李召虎. 棉花和玉米对缩节安吸收、转运与分配的特征研究. 中国科技论文在线, http://www.paper.edu.cn/releasepaper/ content/201204-227 Chen Y, Zhang M, Li Z. The absorption and translocation of mepiquat chloride in maize (Zea mays L.) and cotton (Gossypium spp.). Chinese Science Paper, http://www.paper.edu.cn/releasepaper/content/201204-227 (in Chinese with English abstract)[20]Olszewski N, Sun T P, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 2002, 14: 61–80[21]Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225–251[22]Jiang X, Li H, Wang T, Peng C, Wang H, Wu H, Wang X. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J, 2012, 72: 768–780[23]Ross J J, Murfet I C, Reid J B. Gibberellin mutants. Physiol Plant, 1997, 100: 550–560[24]Kang S M, Kimb J T, Hamayun M, Hwang I C, Khan A L, Kim Y H, Lee J H, Lee I J. Influence of prohexadione-calcium on growth and gibberellins content of Chinese cabbage grown in alpine region of South Korea. Sci Hortic, 2010, 125: 88–92[25]Otani M, Meguro S, Gondaira H, Hayashi M, Saito M, Han D S, Inthima P, Supaibulwatana K, Mori S, Jikumaru Y, Kamiya Y, Li T, Niki T, Nishijima T, Koshioka M, Nakano M. Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. J Plant Physiol, 2013, 170: 1416–1423[26]Yamaguchi S, Sun T P, Kawaide H, Kamiya Y. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol, 1998, 116: 1271–1278[27]Ayele B T, Ozga J A, Kurepin L V, Reinecke D M. Developmental and embryo axis regulation of gibberellin biosynthesis during germination and young seedling growth of pea. Plant Physiol, 2006, 142: 1267–1281[28]Yamaguchi S, Kamiya Y, Sun T P. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J, 2001, 28:443–453[29]李晨晨, 侯雷, 尹亮, 赵金凤, 袁守江, 张文会, 李学勇. 水稻极矮突变体s2-47对赤霉素的响应及基因定位研究. 作物学报, 2013, 39: 1766−1774Li C C, Hou L, Yin L, Zhao J F, Yuan S J, Zhang W H, Li X Y. Gibberellin responsiveness and gene mapping of rice extreme dwarf mutant s2-47. Acta Agron Sin, 2013, 39: 1766−1774 (in Chinese with English abstract) |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | YAN Wei, LI Fang-Jun, XU Dong-Yong, DU Ming-Wei, TIAN Xiao-Li, LI Zhao-Hu. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humity in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1654-1665. |
[9] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[10] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[11] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[12] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[13] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[14] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[15] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
|