Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (01): 15-21.doi: 10.3724/SP.J.1006.2015.00015

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis of Immunity to Soybean Cyst Nematode Race 3 in Elite Line Zhongpin 03-5373

LIU Bo1, LI Ying-Hui1, YU Bai-Shuang2, WANG Jia-Jun2, LIU Yu-Lin1, CHANG Ru-Zhen1, QIU Li-Juan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology in Beijing, Agriculture of Ministry / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China?
  • Received:2014-04-25 Revised:2014-09-06 Online:2015-01-12 Published:2014-11-11
  • Contact: 邱丽娟, E-mail: qiulijuan@caas.cn, Tel: 10-82105843

Abstract:

Soybean cyst nematode (SCN) race 3, one of the eight races identified in China, is widely distributed and severely reduced soybean yield. Zhongpin 03-5373 (ZP03-5373) is an elite line immune to SCN race 3. In this study, a recombinant inbred line (RIL) population was developed from a cross between ZP03-5373 and Zhonghuang 13 (ZH13). A genetic linkage map was constructed using a total of 506 molecular markers, including SSRs, EST-SSRs, InDel, and SNP. The total length of the genetic map was 2651.9 cM with an average marker spacing of 5.24 cM. Based on the phenotyping data, we detected three QTL intervals to dominate SCN3, including SCN3-7 (Gm07), SCN3-11 (Gm11), and SCN3-18 (Gm11). Main effect QTL, SCN3-18 could explain 29.5% of resistant variation. Two minor effect QTLs, SCN3-7 and SCN3-11, explained 6.2% and 5.5% of resistant variation, respectively. And it further showed there was significant epistatic interaction between SCN3-7 and SCN3-18 for resistance to SCN3. Both SCN3-7 and SCN3-11 were confirmed to be resistant to SCN3 by tracking flanking marker in the ancestors of ZP03-5373. These markers will be helpful for developing SCN resistant cultivars and cloning resistant genes by marker assisted selection.

Key words: Soybean, Soybean cyst nematode, Recombinant inbreed line, Molecular marker, QTL

[1]常玮, 韩英鹏, 胡海波, 李文滨. 基于元分析与结构域注释的大豆胞囊线虫抗性基因挖掘. 中国农业科学, 2010, 43: 4787–4795

Chang W, Han Y P, Hu H B, Li W B. Mining candidate genes for resistance to soybean cyst nematode based on meta-analysis and domains annotations. Sci Agric Sin, 2010, 43: 4787–4795 (in Chinese with English abstract)

[2]陈贵省, 颜清上, 闫淑荣, 邵桂花. 大豆胞囊线虫的危害与控制. 作物杂志, 2000, (1): 6–9

Chen G S, Yan Q S, Yan S R, Shao G H. Destroy and control of soybean cyst nematode. Crops, 2000, (1): 6–9 (in Chinese)

[3]袁翠平, 卢为国, 刘章雄, 李英慧, 李卫东, 关荣霞, 常汝镇, 邱丽娟. 大豆抗胞囊线虫4号生理小种新品系SSR标记分析. 作物学报, 2008, 34: 1858–1864 (in Chinese with English abstract)

Yuan C P, Lu W G, Liu Z X, Li Y H, Li W D, Guan R X, Chang R Z, Qiu L J. SSR analysis of new developed soybean lines resistant to soybean cyst nematode (Heterodera glycines Ichinohe) race 4. Acta Agron Sin, 2008, 34: 1858–1864

[4]Anand S C, Rao-Arelli A P. Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5. Crop Sci, 1989, 29: 1181–1184

[5]Arelli P R, Young L D, Concibido V C. Inheritance of resistance in soybean PI567516C to LY1 nematode population infecting cv. Hartwig. Euphytica, 2009, 165: 1–4

[6]Guo B, Sleper D A, Arelli P R, Shannon J G, Nguyen H T. Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet, 2005, 111: 965–971

[7]Concibido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci, 1994, 34: 240–246

[8]Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci, 2006, 46: 224–233

[9]Meksem K, Pantazopoulos P, Njiti V N, Hyten L D, Arelli P R, Lightfoot D A. ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1and Rhg4 loci. Theor Appl Genet, 2001, 103: 710–717

[10]Vuong T D, Sleper D A, Shannon J G, Nguyen H T. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet, 2010, 121: 1253–1266

[11]Kim M, Hyten D L, Bent A F, Diers B W. Fine mapping of the SCN resistance locus from PI88788. Plant Genome, 2010, 3: 81–89

[12]Cook D E, Lee T G, Guo X L, Melito S, Wang K, Bayless A M, Wang J P, Hughes T J, Willis D K, Clemente T E, Diers B W, Jiang J M, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338: 1206–1209

[13]Liu S, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C L, Jamai A, Mellouki T E, Juvale P S, Hill J, Baum T J, Cianzio S, Whitham S A, Korkin D, Mitchum M G, Meksem Ket. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492: 256–260

[14]Kim M, Hyten D L, Niblack T L, Diers, B W. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci, 2011, 51: 934–943

[15]刘章雄, 卢为国, 常汝镇, 邱丽娟. 大豆抗胞囊线虫4号生理小种的种质创新. 大豆科学, 2009, 27: 911–914

Liu Z X, Lu W G, Chang R Z, Qiu L J. Creation of new soybean SCN4 resistant lines. Soybean Sci, 2008, 27: 911–914 (in Chinese with English abstract)

[16]张姗姗, 李英慧, 李金英, 邱丽娟. 优良品系中品03-5373系谱的遗传解析及抗大豆胞囊线虫病相关标记鉴定. 作物学报, 2013, 39: 1746–1753

Zhang S S, Li Y H, Li J Y, Qiu L J. Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode. Acta Agron Sin, 2013, 39: 1746–1753 (in Chinese with English abstract)

[17]Liu Y L, Li Y H, Jochen C R, Mette M F, Liu Z X, Liu B, Zhang S S, Yan L, Chang R Z, Qiu L J. Identification of QTLs underlying plant height and seed weight in soybean. Plant Genome, online: doi: 10.3835/plantgenome2013.03.0006

[18]Golden A M. Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glyecines). Plant Dis Rep, 1970, 54: 544–546

[19]郑延海, 闫世纯. 大豆胞囊线虫生理小种的鉴定及大豆种质资源对其抗性的评价. 植物保护, 1997, 23(4): 31–32

Zheng Y H, Yan S C. Identification of soybean cyst nematode species and the evaluation of the soybean germplasm’s resistance. Plant Prot, 1997, 23(4): 31–32 (in Chinese)

[20]Song Q, Jia G, Zhu Y, Grant D, Nelson R T, Hwang E Y, Hyten D L, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci, 2010, 50: 1950–1960

[21]李英慧, 袁翠平, 张辰, 李伟, 南海洋, 常汝镇, 邱丽娟. 基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析. 遗传, 2009, 31: 1259–1264

Li Y H, Yuan C P, Zhang C, Li W, Nan H Y Chang R Z, Qiu L J. Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode. Hereditas (Beijing), 2009, 31: 1259–1264 (in Chinese with English abstract)

[22]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245

Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245

[23]Hyten D L, Choi I Y, Song Q J, Specht J E, Carter T E, Shoemaker R C, Hwang E Y, Matukumalli L K, Cregan P B. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci, 2010, 50: 960–968

[24]Vorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78

[25]刘刚, 鲁绍雄. 利用连锁不平衡进行QTL精细定位的策略. 家畜生态学报, 2007, 27(6): 197–201

Liu G, Lu S X. Strategties for fine mapping of QTL with linkage disequilibrium. Acta Ecol Anim Domast, 2007, 27(6): 197–201 (in Chinese with English abstract)

[26]Lohnes D G, Bernard R L. Ancestry of US/Canadian commercial cultivars developed by public institutions. Soybean Genetics Newsletter-US Department of Agriculture, Agricultural Research Service, 1991

[27]Anand S C, Gallo K M, Baker I A, Hartwig E E. Soybean plant introductions with resistance to races 4 or 5 of soybean cyst nematode. Crop Sci, 1988, 28: 563–564

[28]Wu X, Blake S, Sleper D A, Shannon J G. QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet, 2009, 118: 1093–1105

[29]李莹, 王志, 焦广音, 常汝镇. 中国大豆遗传资源对大豆孢囊线虫4号生理小种的抗性鉴定研究. 中国农业科学, 1991, 24(5): 64–69

Li Y, Wang Z, Jiao G Y, Chang R Z. Studies on resistance of soybean germplasm resources to race 4 of soybean cyst nematode. Sci Agric Sin, 1991, 24(5): 64–69 (in Chinese with English abstract)

[30]吴海燕. 大豆与大豆胞囊线虫相互关系研究. 沈阳农业大学博士论文, 辽宁沈阳, 2003. pp 150–153

Wu H Y. The Interaction of Resistance Soybean and Heterodera glycine. PhD Dissertation of Shenyang Agricultural University, Shenyang, China. 2003. pp 150–153 (in Chinese with English abstract)

[31]Webb D M, Baltazar B M, Rao-Arelli A P, Schupp J, Clayton K, Keim P, Beavis W D. Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI437654. Theor Appl Genet, 1995, 91: 574–581

[32]Concibido V C, Denny R L, Lange D A, Orf J H, Young N D. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI209332. Crop Sci, 1996, 36: 1643–1650

[33]Concibido V C, Lange D A, Denny R L, Lange D A, Orf J H, Young N D. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI90763, and PI 88788 using DNA markers. Crop Sci, 1997, 37: 258–264

[34]Glover K D, Wang D, Arelli P R, Carlson S R, Cianzio, Diers B W. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI88788 on linkage group J. Crop Sci, 2004, 44: 936–941

[35]Yue P, Sleper D A, Arelli P R. Mapping resistance to multiple races of in soybean PI89772. Crop Sci, 2001, 41: 1589–1595

[36]Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI404198A. Crop Sci, 2006, 46: 224–233

[37]Mudge J, Cregan P B, Kenworthy J P, Kenworthy W J, Orf J H, Young N D. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611–1615

[38]Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811–818

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[11] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[12] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[13] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[14] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[15] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!