Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (01): 31-41.doi: 10.3724/SP.J.1006.2015.00031

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Allelic Variation of Transcription Factor Genes NAC4 in Arachis Species

LI Wen,WAN Qian,LIU Feng-Zhen*,ZHANG Kun,ZHANG Xiu-Rong,LI Guang-Hui,WAN Yong-Shan   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / College of Agronomic Sciences, Shandong Agricultural University, Tai’an 271018, China
  • Received:2014-04-16 Revised:2014-09-30 Online:2015-01-12 Published:2014-11-11
  • Contact: 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540

Abstract:

 

NAC transcription factors play an important role in response to abiotic stress of plant. In this paper, bioinformatic analysis indicated that transcription factor gene AhNAC4 (accession number HM776131.1) can response to drought signal. The comparison of cDNAs (ShrNAC4-a and ShrNAC4-b) and genomic DNAs (ShNAC4-a and ShNAC4-b) from Shanhua 11 showed that AhNAC4 has a full length of 1244 bp and an ORF of 1050 bp, containing two introns at 182–279 bp and 547–642 bp, and encoding 349 amino acids. Four kinds of AhNAC4 genes, named as AhNAC4-a1, AhNAC4-a2, AhNAC4-b1 and AhNAC4-b2 (abbreviations: a1, a2, b1, and b2), were cloned from 32 cultivars with different drought resistances. Among them a1, with only one locus different between the two genes, leading to the difference of corresponding amino acids at site 174; b1 and b2 were alleles, with 14 SNPs, of which two SNPs led to differences of the corresponding amino acids at sites 174 and 244. There were four genotypes of AhNAC4 in the 32 cultivars, containing 10 a1a1b1b1, 5 a1a1b2b2, 15 a2a2b1b1, and 2 a2a2b2b2. Meanwhile, 11 NAC4 genes (Aw1NAC4Aw11NAC4) were isolated from 19 wild peanut accessions in Arachis. Aw2NAC4 had the highest homology of nucleotide sequence witha1 or a2, and b1 or b2 had the highest homology of nucleotide sequence with Aw1NAC4. It is speculated that the protein encoding a1 plays a key role in responding drought stress, and the function of the proteins encoding a1 and b1 genes is closer with that of wild species. and a2 were alleles

Key words: Peanut, Transcription factor, NAC, Allelic variation

[1]Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genesinvolved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841–857

[2]Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y,Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239–247

[3]Duval M, Hsieh T F, Kim S Y, Thomas T L. Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily. Plant Mol Biol, 2002, 50: 237–248

[4]Kusano H, Asano T, Shimada H, Kadowaki K. Molecular characterization of ONAC300, a novel NAC gene specifically expressed at early stages in various developing tissues of rice. Mol Genet &Genomics, 2005, 272: 616–626

[5]Zhong R Q, Demura T, Ye Z H. SNDI, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell, 2006, 18: 3158–3170

[6]Kim S Y, Kim S G, Kim Y S, Seo P J, Bae M, Yoon H K, Park C M. Exploring membrane-associated NAC transcription factors in Arabidopsis: Implications for membrane biology in genome regulation. Nucl Acids Res, 2006, 35: 203–213

[7]Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 2012, 1819: 97–103

[8]孙利军, 李大勇, 张慧娟, 宋凤鸣. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传. 2012, 34: 993–1002

Sun L J, Li D Y, Zhang H J, Song F M. Functions of NAC transcription factors in biotic and abiotic stress responses in plants. Hereditas(Beijing), 2012, 34: 993–1002 (in Chinese with English abstract)

[9]Tran L, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi- Shinozak K. Isolation and function analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell, 2004, 16: 2481–2498

[10]Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst, 2005, 80: 135–139

[11]Zheng X N, Chen B, Lu G J, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009, 379: 985–989

[12]Gao F, Xiong A S, Peng R H, Jin X F, Xu J, Zhu B, Chen J M, Yao QH. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell, 2010, 100: 255–262

[13]Hu H H, Dai M Q, Yao J L, Xiao B, Li X H, Zhang Q F, Xiong L Z. Overexpression a NAM, ATAF, and CUC(NAC)transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987–12992

[14]刘美英, 冶晓芳, 唐益苗, 高世庆, 张朝, 赵昌平, 陈学平. TaNAC提高了转基因烟草的抗旱功能. 中国烟草学报, 2010, 16(6): 82–88

Liu M Y, Ye X F, Tang Y M, Gao S Q, Zhang C, Zhao C P, Chen X P. Effect of TaNAC on drought resistance in transgenic tobaccos. Acta Tab Sin, 2010, 16(6): 82–88 (in Chinese with English abstract)

[15]邵凤霞, 柳展基, 魏丽奇, 曹敏, 毕玉平. 花生NAC类新基因AhNAC1的克隆及序列分析. 西北植物学报, 2008, 28: 1929–1934

Shao F X, Liu Z J, Wei L Q, Cao M, Bi Y P. Cloning and sequence analysis of a novel NAC-like gene AhNAC1 in peanut (Arachis hypogaea). Acta Bot Boreali-Occident Sin, 2008, 28: 1929–1934 (in Chinese with English abstract)

[16]刘旭, 李玲. 花生NAC转录因子AhNAC2和AhNAC3的克隆及转录特征. 作物学报, 2009, 35: 541–545

Liu X, Li L. Cloning and characterization of the NAC-like gene AhNAC2 and AhNAC3 in peanut. Acta Agron Sin, 2009, 35: 541–545 (in Chinese with English abstract)

[17]Jin H X, Huang F, Cheng H, Song H N, Yu D Y. Overexpression of the GmNAC2 Gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol Biol Rep, 2013, 31: 435–442

[18]Liu X, Zhang B Y, Hong L, Su L C, Liang X Q, Li X Y, Li L. Molecular characterization of Arachis hypogaea NAC2 (AhNAC2) reveals it as a nac-Like protein in peanut. Biotechnol Biotechnol Equip, 2010, 4: 2066–2070

[19]Liu X, Liu S, Wu J L, Zhang B Y, Li X Y, Yan Y C, Li L. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem, 2013,70: 354–359

[20]厉广辉, 张昆, 刘风珍, 万勇善. 不同抗旱性花生品种根系形态及生理特性. 作物学报, 40: 531–541

Li G H, Zhang K, Liu F Z, Wan Y S. Morphological and physiological traits of root in different drought resistant peanut cultivars. Acta Agron Sin, 2014 40: 531–541 (in Chinese with English abstract)

[21]厉广辉, 张昆, 刘风珍, 刘丹丹, 万勇善. 不同抗旱性花生品种的叶片形态及生理特性. 中国农业科学, 2014, 47: 644–654

Li G H, Zhang K, Liu F Z, Liu D D, Wan Y S. Morphological and physiological traits of leaf in different drought resistant peanut cultivars. Sci Agric Sin, 2014, 47: 644–654 (in Chinese with English abstract)

[22]张秀荣. 花生Cu/Zn-SOD基因分子特征及其表达差异分析. 山东农业大学硕士论文, 山东泰安, 2013

Zhang X R. Molecular characteristics and differential expression analysis of Cu/Zn-SOD gene in peanut (Arachis hypogaea L.). MS Thesis of Shandong Agriculture University, Taian, China, 2013 (in Chinese with English abstract)

[23]Moretzsohn M C, Gouvea E G, Inglis P W, Leal-Bertioli S C, Valls J F, Bertioli D J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot, 2013, 111: 113–126

[24]杨建昌, 王志琴, 朱庆森. 水稻品种的抗旱性及其生理特性的研究. 中国农业科学, 1995, 28: 65–72

Yang J C, Wang Z Q, Zhu Q S. Drought resistance and its physiological characteristics in rice varieties. Sci Agric Sin, 1995, 28(5): 65–72 (in Chinese)

[25]Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Patanothai A, Holbrook C C. Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. J Agron Crop Sci, 2008, 194: 15–25

[26]Mardeh A S S, Ahmadi A, Poustini K, Mohammadi V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res, 2006, 98: 222–229

[27]Fukai S, Pantuwan G, Jongdee B, Cooper M. Screening for drought resistance in rainfed lowland rice. Field Crops Res, 1999, 64: 61–74

[28]张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价. 作物学报, 2012, 38: 495–504

Zhang Z M, Dai L X, Ding H, Chen D X, Yang W Q, Song W W, Wan S B. Identification and evaluation of drought resistance in different peanut varieties widely grown in northern China. Acta Agron Sin, 2012, 38: 495–504 (in Chinese with English abstract)

[29]张智猛, 戴良香, 宋文武, 陈静, 石运庆. 花生抗旱性鉴定指标的筛选与评价. 植物生态学报, 2011, 35: 100–109

Zhang Z M, Wan S B, Dai L X, Song W W, Chen J, Shi Y Q. Estimating and screening of drought resistance indexes of peanut. Chin J Plant Ecol, 2011, 35: 100–109 (in Chinese with English abstract)

[30]严美玲, 李向东, 矫岩林, 王丽丽. 不同花生品种的抗旱性比较鉴定. 花生学报, 2004, 33(1): 8–12

Yan M L, Li X D, Jiao Y L, Wang L L. Identification of drought resistance in different peanut varieties. Journal of Peanut Science, 2004, 33(1): 8–12(in Chinese)

[31]Burow M D, Simpson C E, Faries M W, Starr J L, Paterson A H. Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome, 2009, 52: 107–119

[32]张新友. 挖掘利用近缘野生种质加强花生种质创新. 作物杂志, 2012, (6): 6–7

Zhang X Y. Excavating and taking advantage of relatives wild germplasm to strengthen germplasm innovation of peanut. Crops, 2012, (6): 6–7 (in Chinese)

[33]陈本银, 姜慧芳, 任小平, 廖伯寿, 黄家权. 野生花生抗青枯病种质的发掘及分子鉴定. 华北农学报, 2008, 23(3): 170–175

Chen B Y, Jiang H F, Ren X P, Liao B S, Huang J Q. Identification and molecular traits of Arachis species with resistance to bacterial wilt. Acta Agric Boreali-Sin, 2008, 23(3): 170–175 (in Chinese with English abstract)

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[4] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[5] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[6] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[7] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[8] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[9] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[10] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[11] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[12] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[13] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[14] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[15] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!