Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (04): 539-547.doi: 10.3724/SP.J.1006.2015.00539
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHAO Lan-Jie1,XUE Fei2,ZHU Shou-Hong2,LI Yan-Jun2,LIU Yong-Chang2,*,SUN Jie2
[1]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366[2]Wu A M, Chen L, Liu J Y. Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol, 2006, 163: 426–435[3]Sun Y, Allen R D. Functional analysis of the BIN2 genes of cotton. Mol Genet Genom, 2005, 274: 51–59[4]John M E. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol, 1996, 30: 297–306[5]Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen W, Chua N H. Dissecting Functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiol, 2012, 160: 738–748[6]Wasteneys G O. Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci, 2002, 115: 1345–1354[7]Vale R D. The molecular motor toolbox for intracellular transport. Cell, 2003, 112: 467–480[8]Welburn J P. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken), 2013, 70: 476–493[9]Schliwa M, Woehlke G. Molecular motors. Nature, 2003, 422: 759–765[10]Ganguly A, Dixit R. Mechanisms for regulation of plant kinesins. Curr Opin Plant Biol, 2013, 16: 704–709[11]潘章, 陈静, 耿轶钊, 张辉, 覃静宇, 纪青. 驱动蛋白的研究进展. 生命科学研究, 2012, 16: 350–356Pan Z, Chen J, Geng Y Z, Zhang H, Qin J Y, Ji Q. Progresses on kinesin superfamily. Life Sci Res, 2012, 16: 350–356 (in Chinese with English abstract)[12]Lee Y R, Liu B. Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol, 2004, 136: 3877–3883[13]Guo L, Ho C M, Kong Z, Lee Y R, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot, 2009, 103: 387–402[14]Richardson D N, Simmons M P, Reddy A S. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genom, 2006, 7: 18[15]Reddy A S, Day I. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genom, 2001, 2: 2[16]Preuss M L, Delmer D P, Liu B. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol, 2003, 132: 154–160[17]Preuss M L, Kovar D R, Lee Y R, Staiger C J, Delmer D P, Liu B. A plant-specific kinesin binds to actin microfilaments and interacts with cortial microtubules in cotton fibers. Plant Physiol, 2004, 136: 3945–3955[18]Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J, 2009, 421: 171–180[19]Lu L, Lee Y R, Pan R, Maloof J N, Liu B. An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell, 2005, 16: 811–823[20]邓祝云, 刘玲童, 李唐, 严长杰, 王台. 水稻SAR1蛋白通过参与细胞微管解聚影响籽粒形状和大小. 2012全国植物生物学大会, p 73Deng Z Y, Liu L T, Li T, Yan C J, Wang T. The SAR1 protein in rice make an effect on grain size and shape by participating in cell microtubule depolymerization. National Congress of Plant Biology, 2012. p 73 (in Chinese)[21]Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol, 2010, 51: 1315–1329[22]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci, 2003, 15: 166–167(in Chinese with English abstract)[23]Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol, 2005, 15: 467–476[24]Li J, Xu Y, Chong K. The novel functions of kinesin motor proteins in plants. Protoplasm, 2012, 249: 95–100[25]Wei L, Liu B, Li Y. Distribution of a kinesin-related protein on Golgi apparatus of tobacco pollen tubes. Chin Sci Bull, 2005, 50: 2175–2181[26]Wei L, Zhang W, Liu Z, Li Y. Atkinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol, 2009, 9: 138 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[3] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[4] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[5] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[6] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[7] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[8] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[9] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[10] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[11] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[12] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[13] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[14] | XU Yi, ZHANG Li-Lan, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Genomics and genetic improvement in main bast fiber crops: advances and perspectives [J]. Acta Agronomica Sinica, 2021, 47(6): 997-1019. |
[15] | LI Fu, WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming. Characterization of the expression profiling of circRNAs in the barks of stems in ramie [J]. Acta Agronomica Sinica, 2021, 47(6): 1020-1030. |
|