Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1426-1434.doi: 10.3724/SP.J.1006.2015.01426

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Legumes Intercropping with Oat on Photosynthesis Characteristics of and Grain Yield

FENG Xiao-Min1, **, YANG Yong1, 2, **, REN Chang-Zhong3, HU Yue-Gao1, ZENG Zhao-Hai1, *   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2 Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 3 Baicheng Academy of Agricultural Sciences in Jilin, Baicheng 137000, China
  • Received:2015-03-07 Online:2015-09-12 Published:2015-09-12

Abstract: Intercropping, a commonly used agronomic management by farmers in China for centuries can improve light, heat, water and nitrogen utilization efficiencies and significantly enhance crop yield. To reveal the mechanism of photosynthesis in soybean-oat and peanut-oat intercropping systems, we conducted a two-year (2011, 2012) field experiment in Baicheng, Jilin province. Under the nitrogen-free condition, crop yield, yield components and photosynthesis and relative chlorophyll content (SPAD) of functional leaves in crops were investigated during growth stage. The results showed that land equivalent ratio (LER) was from 1.41 to 1.63 and from 1.31 to 1.52 for soybean-oat and peanut-oat intercropping, respectively. Also, most yield components from oat (plant height, spike length and spikelet, grain number per spike) under intercropping with soybean were higher than those from mono-cropping oat, except for grain weight per plant and thousand seed weight. Under intercropping with peanut, all yield components of oat increased in comparison with those under mono-cropping oat and spikelet, grain number per spike and grain weight per plant showed significant difference. Moreover, all yield components of soybean intercropping with oat improved, whereas decreased peanut pod number and grain weight per plant. As for photosynthesis, intercropping enhanced chlorophyll content and net photosynthetic rate of oat and altered chlorophyll composition which contributed to the slower process of oat aging. With regard to peanut, chlorophyll content slightly increased when intercropped with oat and net photosynthetic rate significantly improved during the late booting stage to heading stage of oat. In conclusion, under the condition of nitrogen-free, intercropping is demonstrably superior to monoculture. The peanut-oat intercropping system notably promotes the growth of oat, while the oat and soybean are both benefit from the soybean-oat intercropping system.

Key words: Oat, Soybean, Peanut, Intercropping, Photosynthesis characteristics, Yield

[1] 杨峰, 娄莹, 廖东平, 高仁才, 雍太文, 王小春, 刘卫国. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 1-10 Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin , 2015, 41: 1-10 (in Chinese with English abstract)
[2] 焦念元, 赵春, 宁堂原, 侯连涛, 付国占, 李增嘉, 陈明灿. 玉米花生间作对作物产量和光合作用光响应的影响. 应用生态学报, 2008, 19: 981-985 Jiao N Y, Zhao C, Ning T Y, Hou L T, Fu G Z, Li Z J, Chen M C. Effect of maize-peanut intercropping on economic yield and light response of photosynthesis. Chin J Appl Ecol , 2008, 19: 981-985 (in Chinese with English abstract)
[3] 李隆, 李晓林, 张福锁, 孙建好, 杨思存, 芦满济. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6: 140-146 Li L, Li X L, Zhang F S, Sun J H, Yang S C, Lu M J. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. Plant Nutr Fert Sci , 2000, 6: 140-146 (in Chinese with English abstract)
[4] 王晓丽. 地膜覆盖、带覆及根系相互作用对间作优势及氮磷养分高效利用的影响. 中国农业大学硕士学位论文, 北京, 2002 Wang X L. Effect of Plastic Film Mulching, Strip Width and Rhizosphere Interation on Intercropping Benefit and Use Efficiency of Nitrogen and Phosphorus In Intercropping System. MS Thesis of China Agricultural University, Beijing, China, 2002
[5] 肖焱波, 李隆, 张福锁. 小麦-蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38: 965-973 Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and faba bean. Sci Agric Sin , 2005, 38: 965-973 (in Chinese with English abstract)
[6] 肖焱波, 段宗颜, 金航, 胡万里, 陈拾华, 魏朝富. 小麦-蚕豆间作体系中的氮节约效应及产量优势. 植物营养与肥料学报, 2007, 13: 267-271 Xiao Y B, Duan Z Y, Jin H, Hu W L, Chen S H, Wei C F. Spared N response and yields advantage of intercropped wheat and faba bean. Plant Nutr Fert Sci , 2007, 13: 267-271 (in Chinese with English abstract)
[7] 李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建. 大豆-玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. 大豆科学, 2010, 29: 808-811 Li Z, Qin X Y, Wang X G, Li X T, Wang J H, Cao M J. Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean. Soybean Sci , 2010, 29: 808-811 (in Chinese with English abstract)
[8] 宁堂原, 焦念元, 安艳艳, 赵春, 申加祥, 李增嘉. 间套作资源集约利用及对产量品质影响研究进展. 中国农学通报, 2007, 23(4): 159-162 Ning T Y, Jiao N Y, An Y Y, Zhao C, Shen J X, Li Z J. Advances in resources intensive utilization, yield and quality in intercropping or relay cropping systems. Chin Agric Sci Bull , 2007, 23(4): 159-162 (in Chinese with English abstract)
[9] 黄进勇, 李新平, 孙敦立. 黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究. 应用生态学报, 2003, 14: 51-56 Huang J Y, Li X P, Sun D L. Ecophysiological effect of multiple cropping of winter wheat spring corn summer corn in Huanghuaihai Plain. Chin J Appl Ecol , 2003, 14: 51-56 (in Chinese with English abstract)
[10] 张建华, 马义勇, 王振南, 齐晶. 间作模式中玉米光合作用指标改善的研究. 玉米科学, 2006, 14(4): 104-106 Zhang J H, Ma Y Y, Wang Z N, Q J. Research on the improvement of photosynthesis indices of maize in the intercropping system. J Maize Sci , 2006, 14(4): 104-106
[11] 李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建. 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. 大豆科学, 2010, 29: 808-811 Li Z, Qin X Y, Wang X G, Li X T, Wang J H, Cao M J. Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean. Soybean Sci , 2010, 29: 808-811 (in Chinese with English abstract)
[12] 焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006, 32: 917-923 Jiao N Y, Ning T Y, Zhao C, Wang Y, Shi Z Q, Hou L T, Fu G Z, Jiang X D. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agron Sin , 2006, 32: 917-923 (in Chinese with English abstract)
[13] 任长忠. 不同熟期裸燕麦品种光温气候特性研究. 中国农业大学博士学位论文, 北京, 2010 Ren C Z. Photothermal Characterization of Naked Oat Genotypes with Different Maturity. PhD Dissertation of China Agricultural University, Beijing, China, 2010 (in Chinese with English abstract)
[14] Dhima K V, Lithourgidis A S, Vasilakoglou I B, Dordas C A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res , 2007, 100: 249-256
[15] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37: 1010-1017 Jiao N Y, Yang M K, Ning T Y, Yin F, Xu G W, Fu G Z, Li Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chin J Plan Ecol , 2013, 37: 1010-1017 (in Chinese with English abstract)
[16] 王凯, 朱教君, 于立忠, 孙一荣, 陈光华. 遮荫对黄波罗幼苗的光合特性及光能利用效率的影响. 植物生态学, 2009, 33: 1003-1012 Wang K, Zhu J J, Yu L Z, Sun Y R, Chen G H. Effect of shading on the photosynthetic characteristics and light use efficiency of phellodendron Amurense seedings. Chin J Plan Ecol , 2009, 33: 1003-1012 (in Chinese with English abstract)
[17] 沈其荣, 褚贵新, 曹金留, 曹云, 殷晓燕. 从氮素营养的角度分析旱作水稻与花生间作模式的产量优势. 中国农业科学, 2004, 37: 1177-1182 Shen Q R, Chu G X, Cao J L, Cao Y, Yin X Y. Yield advantage of groundnut intercropped with rice cultivated in Aerobic soil in the viewpoint of plant nitrogen nutrition. Sci Agric Sin , 2004, 37: 1177-1182 (in Chinese with English abstract)
[18] 左元梅, 李晓林, 王永歧, 曹一平, 张福锁. 玉米花生间作对花生铁营养的影响. 植物营养与肥料报, 1997, 3: 153-159 Zuo Y M, Li X L,Wang Y Q, Cao Y P, Zhang F S. Effect of maize /peanut intercropping on iron nutrition of peanut. Plant Nutr Fert Sci , 1997, 3: 153-159 (in Chinese with English abstract)
[19] 唐秀梅, 钟瑞春, 揭红科, 刘超, 王泽平, 韩柱强, 蒋菁, 贺梁琼, 李忠, 唐荣华. 间作遮荫对花生光合作用及叶绿素荧光特性的影响. 西南农业学报, 2011, 24: 1703-1707 Tang X M, Zhong R C, Jie H K, Liu C, Wang Z P, Han Z Q, Jiang Q, He L Q, Li Z, Tang R H. Effect of shading on photosynthesis and chlorophyll fluorescence characteristic of peanut under different inter-row space in Cassava-peanut intercropping. Southwest China J Agric Sci , 2011, 24: 1703-1707 (in Chinese with English abstract)
[20] Kumar S, Rawat C R, Melkania N P. Forage production potential and economic of maize ( Zea mays ) and cowpea ( Vigna unguiculata ) intercropping rained conditions. Indian J Agron , 2005, 50: 134-148
[21] 朱文旭, 张会慧, 许楠, 王鹏, 王师丹, 牟世南, 梁明, 孙广玉. 间作对桑树和谷子生长和光合日变化的影响. 应用生态学报, 2012, 23: 1817-1824 Zhu W X, Zhang H H, Xu N, Wang P, Wang S D, Mou S N, Liang M, Sun G Y. Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis. Chin J Appl Ecol , 2012, 23: 1817-1824 (in Chinese with English abstract)
[22] 蒋海亮, 张清平, 沈禹颖. 黄土高原旱塬区间作比例对燕麦/箭筈豌豆模式的影响. 草业科学, 2014, 31: 272-277 Jiang H L, Zhang Q P, Shen Y Y. Effect of intercropping ratio on autumn-sowing oats/common vetch system on the Loss Plateau. Pratac Sci , 2014, 31: 272-277 (in Chinese with English abstract)
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[9] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[10] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[11] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[12] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[13] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!