Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1435-1444.doi: 10.3724/SP.J.1006.2015.01435


Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed (Brassica napus L.)

ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin*, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao   

  1. Institute of Agricultural Economics and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-12-01 Online:2015-09-12 Published:2015-09-12

Abstract: To quantify the relationships between main stem leaf morphological parameters for rapeseed and the corresponding leaf biomass, we conducted field experiments on varieties, transplanting densities, and fertilizer in 2011 to 2012, and 2012 to 2013 seasons. The biomass-based leaf morphological parameter models for rapeseed on main stem were constructed through observing leaf length, maximum leaf width, and leaf petiole length under various treatments, and analyzing the relationships between leaf morphological parameters and the corresponding leaf biomass. Because both of the leaf length and leaf width were positively proportional to the square root of the corresponding leaf biomass, meanwhile the leaf petiole length was positively proportional to the corresponding leaf length, the changes in the leaf length, the maximum leaf width, and the leaf petiole length with the changed of square root of the corresponding leaf biomass for different treatments could be described with linear function. The biomass-based leaf morphological parameter models were validated using independent experiment data, and the results showed that the model revealed satisfactory predictions of leaf length, leaf width, and leaf petiole length, except the simulation for leaf petiole length of Ningyou 16. The research provides a mechanistic method for linking the rapeseed growth model with the morphological model using organ biomass, and lays a foundation for the establishment of functional-structural plant models of rapeseed.

Key words: Rapeseed (Brassica napus L.), Biomass, Leaf morphology, Simulation model

[1] 王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29: 101-105 Wang H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci , 2007, 29: 101-105 (in Chinese with English abstract)
[2] 张树杰, 李玲, 张春雷. 播种期和种植密度对冬油菜籽粒产量和含油率的影响. 应用生态学报, 2012, 23: 1326-1332 Zhang S J, Li L, Zhang C L. Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape. Chin J Appl Ecol , 2012, 23: 1326-1332 (in Chinese with English abstract)
[3] 张伟欣, 曹宏鑫, 朱艳, 刘岩, 张文宇, 陈昱利, 傅坤亚. 油菜作物模型研究进展. 中国农业科技导报, 2014, 16(1): 82-90 Zhang W X, Cao H X, Zhu Y, Liu Y, Zhang W Y, Chen Y L, Fu K Y. Research progress on rapeseed crop model. J Agric Sci Technol , 2014, 16(1): 82-90 (in Chinese with English abstract)
[4] Pinto A C, Guarieiro L L N, Rezende M J C, Ribeiro N M, Torres E A, Lopes W A, de P Pereira P A, de Andrade J B. Biodiesel: an overview. J Brazil Chem Soc , 2005, 16: 1313-1330
[5] 曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈煜利. 作物模型发展探讨. 中国农业科学, 2011, 44: 3520-3528 Cao H X, Zhao S L, Ge D K, Liu Y X, Liu Y, Sun J Y, Yun Y B, Zhang Z Y, Chen Y L. Discussion on development of crop models. Sci Agric Sin , 2011, 44: 3520-3528 (in Chinese with English abstract)
[6] Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J. LIGNUM: a tree model based on simple structural units. Ann Bot , 1996, 77: 87-98
[7] Yang H P, Kang M Z, De Reffye P, Dingkuhn M. A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot , 2004, 93: 591-602
[8] Lopez G, Favreau R R, Smith C, DeJong M T. L-PEACH: a computer-based model to understand how peach trees grow. Hort Technol , 2010, 20: 983-990
[9] Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann Bot , 2005, 95: 1131-1143
[10] 刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42: 4093-4099 Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D C, Sun J Y, Yun Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Sci Agric Sin , 2009, 42: 4093-4099 (in Chinese with English abstract)
[11] 刘永霞, 岳延滨, 刘岩, 曹宏鑫, 葛道阔, 魏秀芳. 基于生物量的水稻根系生长动态模型. 江苏农业学报, 2011, 27: 704-709 Liu Y X, Yun Y B, Liu Y, Cao H X, Ge D K, Wei X F. Biomass-based dynamic model for rice root system. Jiangsu J Agric Sci , 2011, 27: 704-709 (in Chinese with English abstract)
[12] Cao H X, Liu Y, Liu Y X, Hanan J S, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice ( Oryza sativa L.) aboveground architectural parameter models. J Integr Agric , 2012, 11: 1621-1632
[13] Evers J B, Vos J, Yin X, Romero P, van der Putten P E L, Struik P C. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J Exp Bot , 2010, 61: 2203-2216
[14] Guo Y, Ma Y T, Zhan Z G, Li B G, Dingkuhn M, Luquet D, de Reffye P. Parameter optimization and field validation of the Functional-Structural model GREENLAB for maize. Ann Bot , 2006, 97: 217-230
[15] Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agric Syst , 2003, 75: 47-77
[16] Kiniry J R, Major D J, Izaurralde R C, Williams J R, Gassman P W, Morrison M, Bergentine R, Zentner R P. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Can J Plant Sci , 1995, 75: 679-688
[17] Petersen C T, Jørgensen U, Svendsen H, Hansen S, Jensen H E, Nielsen N E. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur J Agron , 1995, 4: 77-89
[18] Habekotté B. A model of the phenological development of winter oilseed rape ( Brassica napus L.). Field Crops Res , 1997, 54: 127-136
[19] Gabrielle B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Res , 1998, 57: 95-111
[20] Robertson M J, Holland J F, Kirkegaard J A, Smith C J. Simulation Growth and Development of Canola in Australia. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 1999
[21] Zhang C L, Li G M, Cao H X. Simulating Growth and Development of Winter Rape in Yangtze River Valley. Proceedings of the 11th International Rapeseed Congress, 6-10, July, 2003. p 835
[22] 刘洪, 金之庆. 油菜发育动态模拟模型. 应用气象学报, 2003, 14: 634-640 Liu H, Jin Z Q. A phenological model to simulate rape development. J Appl Meteorol Sci , 2003, 14: 634-640 (in Chinese with English abstract)
[23] 廖桂平, 官春云. 甘蓝型冬油菜( Brassica napus )干物质积累、分配与转移的特性研究. 作物学报, 2002, 28: 52-58 Liao G P, Guan C Y. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed ( Brassica napus ). Acta Agron Sin , 2002, 28: 52-58 (in Chinese with English abstract)
[24] 刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. 中国油料作物学报, 2004, 26(1): 28-32 Liu T M, Hu L Y, Zhao Z H, Cao C G, Cao W X, Yan M C. A mechanistic of phasic and phenologial development in rape: I. Description of the model. Chin J Oil Crop Sci , 2004, 26(1): 28-32 (in Chinese with English abstract)
[25] 曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. 作物学报, 2006, 32: 1530-1536 Cao H X, Zhang C L, Li G M, Zhang B J, Zhang S L, Wang B Q, Jin Z Q. Researches of simulation models of rape growth and development. Acta Agron Sin , 2006, 32: 1530-1536 (in Chinese with English abstract)
[26] 汤亮, 曹卫星, 朱艳. 基于生长模型的油菜管理决策支持系统. 农业工程学报, 2006, 22(11): 160-164 Tang L, Cao W X, Zhu Y. Development of growth model-based decision support system for rapeseed management. Trans CSAE , 2006, 22(11): 160-164 (in Chinese with English abstract)
[27] 廖桂平, 李锦卫, 欧中斌, 聂敏. 基于参数L-系统的油菜花朵与花序生长可视化研究. 农业工程学报, 2009, 25(4): 150-156 Liao G P, Li J W, Ou Z B, Nie M. Visual growth of flower and inflorescence of rapeseed ( Brassica napus L.) based on parametric L-system. Trans CSAE , 2009, 25(4): 150-156 (in Chinese with English abstract)
[28] 岳延滨, 朱艳, 曹宏鑫. 基于几何参数模型和OpenGL的油菜花朵可视化研究. 江苏农业学报, 2011, 27: 264-270 Yue Y B, Zhu Y, Cao H X. Models and OpenGL-based visual technology for rapeseed ( Brassica napus L.) flower. Jiangsu J Agric Sci , 2011, 27: 264-270 (in Chinese with English abstract)
[29] Zhao L L, Wen W L, Peng Y Y, Guo X Y, Lu S L, Du J J. Geometric modeling of rape ( Brassica napus L.) during seeding stage. Agric Sci Technol , 2011, (7): 1085-1087
[30] Groer C, Kniemeyer O, Hemmerling R, Kurth W, Becker H, Sorlin G B. A dynamic 3D model of rape ( Brassica napus L.) computing yield components under variable nitrogen fertilization regimes. In: 5th International Workshop on Functional- Structural Plant Models. Napier, New Zealand, November 2007, 4.1-4.3
[31] Kniemeyer O. Rule-based modelling with the XL/GroIMP software. Proceedings of 6th GWAL, April 14-16, 2004. pp 56-65
[32] Müller J, Wernecke P, Diepenbrock W. LEAFC3-N: a nitrogen-sensitive extension of the CO 2 and H 2 O gas exchange model LEAFC3 parameterised and tested for winter wheat ( Triticum aestivum L.). Ecol Model , 2005, 183: 183-210
[33] Jullien A, Mathieu A, Allirand J M, Pinet A, de Reffye P, Cournede P H, Ney B. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape ( Brassica napus ) using the GreenLab model. Ann Bot , 2011, 107: 765-779
[34] Jullien A, Allirand J M, Mathieu A, Andrieu B, Ney B. Variations in leaf mass per area according to N nutrition, plant age, and leaf position reflect ontogenetic plasticity in winter oilseed rape ( Brassica napus L.). Field Crops Res , 2009, 114: 188-197
[35] Cao H X, Zhang W Y, Zhang W X, Liu Y, Liu Y X, Hanan J S, Chen Y L, Yue Y B, Zhang Z Y, Ge D K. Biomass-based rapeseed ( Brassica napus L.) leaf geometric parameter model. Proceedings of the 7th International Conference on Functional-Structural Plant Models, 9-14 June, 2013. p 26
[36] 张伟欣. 基于生物量的油菜植株地上部形态结构模型研究. 南京农业大学硕士学位论文, 江苏南京, 2013 Zhang W X. Biomass-Based Rapeseed ( Brassica napus L.) Aboveground Morphological Structure Model. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2013 (in Chinese with English abstract)
[37] Cao H X, Hanan J S, Liu Y, Liu Y X, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Comparison of crop model validation methods. J Integr Agric , 2012, 11: 1274-1285
[1] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[2] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[3] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[4] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
[5] YAN Qing-Qing,ZHANG Ju-Song,DAI Jian-Min,DOU Qiao-Qiao. Effects of glycinebetain on photosynthesis and biomass accumulation of island cotton seedlings under saline alkali stress [J]. Acta Agronomica Sinica, 2019, 45(7): 1128-1135.
[6] RU Xiao-Ya,LI Guang,CHEN Guo-Peng,ZHANG Tong-Shuai,YAN Li-Juan. Regulation effects of water and nitrogen on wheat yield and biomass in different precipitation years [J]. Acta Agronomica Sinica, 2019, 45(11): 1725-1734.
[7] Hai-Xia WU,Li-Li GUO,Li-Hua HAO,Hao ZHANG,Qing-Tao WANG,Dong-Juan CHENG,Zheng-Ping PENG,Fei LI,Xi-Xi ZHANG,Shu-Bin LI,Ming XU,Yun-Pu ZHENG. Effects of Water and CO2 Concentration on Stomatal Traits, Leaf Gas Exchange, and Biomass of Winter Wheat [J]. Acta Agronomica Sinica, 2018, 44(10): 1570-1576.
[8] Shen-Bin YANG, Sha-Sha XU, Xiao-Dong JIANG, Chun-Lin SHI, Ying-Ping WANG, Shuang-He SHEN. Correcting the Response of Maximum Leaf Photosynthetic Rate to Temperatures in Crop Models [J]. Acta Agronomica Sinica, 2018, 44(05): 750-761.
[9] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
[10] SHEN Jie,CAI Yan,HE Yu-Ting,LI Qi-Quan,DU Xuan-Yan,WANG Chang-Quan,LUO Ding-Qi. Dynamic Simulation of Dry Matter Accumulation in Flue-cured Tobacco and Analysis of Its Characteristics Based on Normalized Method [J]. Acta Agron Sin, 2017, 43(03): 442-453.
[11] CHEN Yu-Li,YANG Ping,ZHANG Wen-Yu,ZHANG Wei-Xin,ZHUYe-Ping,LI Shi-Juan,GONG Fa-Jiang,BI Hai-Bin,YUE Ting,CAO Hong-Xin. Biomass-Based Main Spike MorphologicalParameter Model for Winter Wheat [J]. Acta Agron Sin, 2017, 43(03): 399-406.
[12] CHEN Yu-Li,YANG Ping,ZHANG Wen-Yu,ZHANG Wei-Xin,ZHU Ye-Ping,LI Shi-Juan,GONG Fa-Jiang,BI Hai-Bin,YUE Ting,CAO Hong-Xin. Aboveground Architecture ModelBased onBiomass of Winter Wheat before Overwintering [J]. Acta Agron Sin, 2016, 42(05): 743-750.
[13] HU Mao-Long, PU Hui-Ming, LONG Wei-Hua, GAO Jian-Qin, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song. Enzymatic Characteristics of Acetolactate Synthase Mutant S638N in Brassica napus and Its Resistance to ALS Inhibitor Herbicides [J]. Acta Agron Sin, 2015, 41(09): 1353-1360.
[14] YE De-Lian,QI Rui-Juan,GUAN Da-Hai,LI Jian-Min,ZHANG Ming-Cai,LI Zhao-Hu. Response of Soil Microbial Characteristics and Soil Enzyme Activity to Irrigation Method in No-till Winter Wheat Field [J]. Acta Agron Sin, 2015, 41(08): 1212-1219.
[15] QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*. Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean [J]. Acta Agron Sin, 2015, 41(07): 1073-1085.
Full text



No Suggested Reading articles found!