[1] Solti D E, Visger C J, Soltis P S. The polyploidyrevolution then…and now: Stebbins revised. Am J Bot, 2014, 101: 1057–1078
[2] Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 2004, 16: 1667–1678
[3] Nagahararu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389–452
[4] Li H T, Younas M, Wang X F, Li X M, Chen L, Zhao B, Chen X, Xu J S, Hou F, Hong B H, Liu G, Zhao H Y, Wu X L, Du H Z, Wu J S, Liu K D. Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet, 2013, 126: 937–947
[5] Rahman H. Breeding spring canola (Brassica napus L.) by the use of exotic germplasm. Can J Plant Sci, 2013, 93: 363–373
[6] Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006, 113: 49–54
[7] Mei J, Fu Y, Qian L, Xu X, Li J, Qian W. Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed, 2011, 130: 333–337
[8] Gaeta R T, Pires J C, Iniguez-Luy F, Leon E, Osborn T C. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell, 2007, 19: 3403–3417
[9] Jiang J, Shao Y, Du K, Ran L, Fang X, Wang Y. Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genom, 2013, 1: 72–82
[10] Karim M M, Siddika A, Tonu N N, Hossain D M, Meah M B, Kawanabe T, Fujimoto R, Okazaki K. Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa. Breed Sci, 2014, 63: 495–502
[11] Wen J, Tu J X, Li Z, Fu T D, Ma C Z, Shen J X. Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica, 2008, 162: 81–89
[12] Wendel JF. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225–249
[13] Buggs R J, Chamala S, Wu W, Tate J A, Schnable P S, Soltis D E, Soltis P S, Barbazuk W B. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin.Curr Biol, 2012, 22: 248–252
[14] Feldman M, Liu B, Segal G, Abbo S, Levy A A, Vega J M. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1381–1387
[15] Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377–406
[16] Udall J A, Quijada P A, Osborn T C. Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics, 2005, 169: 967–979
[17] Doyle J J, Flagel L E, Paterson A H, Rapp R A, Soltis D E, Soltis P S, Wendel J F. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Plant Biol, 2008, 42: 443–461
[18] Lukens L N, Pires J C, Leon E, Vogelzang R, Oslach L, Osborn T. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol, 2006, 140: 336–348
[19] Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 2000, 12: 1551–1568
[20] Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA, 2001, 98: 6753–6758
[21] Shaked H, Kashkush K, Ozkan H, Feldman M A, Levy A. Reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 13: 1749–1759
[22] Xu Y H, Zhong L, Wu X M, Fang X P, Wang J B. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta, 2009, 229: 471–483
[23] Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15
[24] Demeulemeester M A C, Stallen N Van, De Proft M P. Degree of DNA methylation in chicory (Cichorium intybus L.): in?uence of plant age and vernalization. Plant Sci, 1999, 142: 101–108
[25] Xu M L, Li X Q, Korban S S. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet, 2004, 109: 899–910
[26] Kim J K, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci, 2009, 66: 596–612
[27] Meilinger D, Fellinger K, Bultlnann S, Rothbauer U, Bonapace I M, Klinkert W E F. Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep, 2009, 10: 1259–1264
[28] Hwang I S, Choi D S, Kim N H, Kim D S, Hwang B K. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytol, 2014, 201: 518–530
[29] Tan X, Yan S Z, Tan R, Zhang Z Y, Wang Z, Chen J. Characterization and expression of a GDSL-Like lipase gene from Brassica napus in Nicotiana benthamiana. Protein J, 2014, 33: 18–23
[30] Gao Y, Zhao Y, Li T T, Liu Y, Ren C X, Wang M L. Molecular cloning and expression analysis of an F-box protein gene responsive to plant hormones in Brassica napus. Mol Biol Rep, 2010, 37: 1037–1044
[31] Lou P, Wu J, Cheng F, Cressman L G, Wang X W, McClung C R. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell, 2012, 24: 2415–2426
[32] Ferry N, Jouanin L, Ceci L R, Mulligan E A, Emami K, Gatehouses J A, Gatehouse A M R. Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor-2 on the beneficial predator Pterostichus madidus. Mol Ecol, 2005, 14: 337–349
[33] Chao Y, Yang Q, Kang J, Zhang T, Sun Y. Expression of the alfalfa FRIGIDA-like gene, MsFRI-L delays flowering time in transgenic Arabidopsis thaliana. Mol Biol Rep, 2013, 40: 2083–2090
[34] Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D. Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry, 2005, 66: 1334–1345
[35] Cervera M T, Ruiz-Garcia L, Martinez-Zapater J. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom, 2002, 268: 543–552
[36] Madlung A, Masuelli R W, Watson B, Reynolds S H, Davison J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol, 2002, 129: 733–746
[37] Xiong L Z, Xu C G, Maroof M A S, Zhang Q F. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet, 1999, 261: 439–446
[38] Cai Y F, Xiang F N, Zhi D Y, Liu H, Xia G M. Genotyping of somatic hybrids between Festuca arundinacea Schred and Triticum aestivum L. Plant Cell Rep, 2007, 26: 1809–1819
[39] Salmon A, Ainouche M L, Wendel J F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol, 2005, 14: 1163–1175
[40] Gaeta R T, Pires J C, Iniguez-Luy F, Leon E, Osborn T C. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell, 2007, 19: 3403–3417
[41] Birchler J A. Heterosis: The genetic basis of hybrid vigour. Nature Plants, 2015,15020, DOI: 10.1038/NPLANTS.2015.20 |