Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (04): 496-500.doi: 10.3724/SP.J.1006.2017.00496

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping QTLs for Awn Length in Recombinant Inbred Line Population Derived from the Cross between Common Wheat and Tibetan Semi-wild Wheat

GONG Xi1,JIANG Yun-Feng2,XU Bin-Jie2,QIAO Yuan-Yuan2,HUA Shi-Yu1,WU Wang1,MA Jian2,ZHOU Xiao-Hong2,QI Peng-Fei2,*,LAN Xiu-Jin2   

  1. 1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; 2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
  • Received:2016-04-14 Revised:2016-11-03 Online:2017-04-12 Published:2016-11-29
  • Contact: Qi Pengfei, E-mail: pengfeiqi@hotmail.com, Tel: 028-82650337 E-mail:360035030@qq.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31570335).

Abstract:

Awn length is an important agronomic trait in hexaploid wheat and controlled by multiple genes. A recombinant inbred line (RIL) population containing 186 lines were developed by crossing Tibetan semi-wild wheat accession Q1028 (female) and common wheat variety Zhengmai 9023, and a genome-wide genetic map (2597 cM) was constructed using SSR and DArT markers. QTLs controlling awn length were identified with two-year phenotypic data and the genetic map by using the Inclusive Composite Interval Mapping (ICIM) method. Two QTLs associated with awn length, designated Qwa.sau-4AS and Qwa.sau-5AL, were detected on chromosomes 4A and 5A, which explained 7.4% and 27.3% of phenotypic variations, respectively. According to genetic locations, effects of the two QTLs might be from Hd and B1 genes that could reduce awn length, respectively. Genetic analysis showed that Qwa.sau-4AS and Qwa.sau-5AL had cumulative effect, with a stronger inhibiting effect in Qwa.sau-5AL than in Qwa.sau-4AS. These results are valuable for fine mapping and cloning target genes controlling awn length in the future.

Key words: Common wheat, Awn length, QTL, SSR marker, DArT marker

[1] Biscoe P V, Littleton E J, Scott R K. Stomatal control of gas exchange in barley awns. Ann Appl Biol, 1973, 75: 285–297 [2] Blum A . Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot, 1985, 36: 432–440 [3] 黄瑾, 骆惠生, 张勃, 贾秋珍, 金明安, 曹世勤, 金社林. 普通小麦芒的遗传分析. 甘肃农业科技, 2011, (2): 11–12 Huang J, Luo H S, Zhang B, Jia Q Z, Jin M A, Cao S Q, Jin S L. Genetic analysis of mount of common wheat. Gansu Agric Sci Tech, 2011, (2): 11–12 (in Chinese with English abstract) [4] 巴青松, 傅兆麟, 白凡杰. 小麦芒的研究. 淮北煤炭师范学院学报(自然科学版), 2010, 31(1): 29–33 Ba Q S, Fu Z l, Bai F J. The research of wheat awns. Journal of Huaibei Coal Industry Teachers College (Nat Sci Edn), 2010, 31(1): 29–33 (in Chinese with English abstract) [5] Maydup M L, Antonietta M, Graciano C, Guiamet J J, Tambussi E A. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Res, 2014, 167: 102–111 [6] 王忠, 顾蕴洁, 高煜珠. 麦芒的结构及其光合特性. 植物学报, 1993, 35: 921–928 Wang Z, Gu Y J, Gao Y Z. Structure and photosynthetic characteristics of awns of wheat and barley. Acta Bot Sin, 1993, 35: 921–928 (in Chinese with English abstract) [7] Li X J, Wang H G, Li H B, Zhang L Y, Teng N J, Lin Q Q, Wang J, Kuang T Y, Li Z S, Li B, Zhang A M, Lin J X. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiol Plant, 2006, 127: 701–709 [8] Rebetzke G J, Bonnett D G, Reynolds M P. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot, 2016, 67: 2573–2586 [9] 杜斌, 崔法, 王洪刚, 李兴锋. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析. 分子植物育种, 2010, 8: 259–264 Du B, Cui F, Wang H G, Li X F. Characterization and genetic analysis of near-isogenic lines for awn-inhibitor gene B1 of common wheat. Mol Plant Breed, 2010, 8: 259–264 (in Chinese with English abstract) [10] Elbaum R, Zaltzman L, Burgert I, Fratzl P. The Role of wheat awns in the seed dispersal unit. Science, 2007, 316: 884–886 [11] 姚国新, 张强, 吴建涛, 胡广隆, 李自超. 利用近等基因系对水稻芒基因AWN3-1的遗传定位. 中国农业大学学报, 2010, 15(5): 1–5 Yao G X, Zhang Q, Wu J T, Hu G L, Li Z C. Mapping awn gene AWN3-1 with near-isogenic line of rice. J China Agric Univ, 2010, 15(5): 1–5 (in Chinese with English abstract) [12] Kosuge K, Watanabe N, Kuboyama T, Melnik V M, Yanchenko V I, Rosova M A, Goncharov N P. Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 2008, 159: 289–296 [13] Li H, Han Y C, Guo X X, Xue F, Wang C Y, Ji W Q. Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genet Resour Crop Evol, 2015, 62: 407–418 [14] 金善宝. 中国小麦学. 北京: 中国农业出版社, 1996. p 13 Jin S B. Wheat Science in China. Beijing: China Agriculture Press, 1996. p 13 (in Chinese) [15] Sourdille P, Cadalen T, Gay G, Gill B, Bernard M. Molecular and physical mapping of genes affecting awning in wheat. Plant Breed, 2002, 121: 320–324 [16] R?der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023 [17] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114 [18] Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915–9920 [19] Jiang Y F, Lan X J, Luo W, Kong X C, Qi P F, Wang J R, Wei Y M, Jiang Q T, Liu Y X, Peng Y Y, Chen G Y, Dai S F, Zheng Y L. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). PloS One, 2014, 9: e114066 [20] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 121: 269–283 [21] Li H H, Ye G Y, Wang J K. A modified algorithm for the Improvement of Composite Interval Mapping. Genetics, 2007, 175: 361–374 [22] Wang Y J, Wang C Y, Zhang H, Yue Z N, Liu X L, Ji W Q. Genetic analysis of wheat (Triticum aestivum L.) and related species with SSR markers. Genet Resour Crop Evol, 2013, 60: 1105–1117 [23] Wang H Y, Wang X E, Liu D J. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J Genet Genomics, 2007, 34: 623–633 [24] Kosuge K, Watanabe N, Kuboyama T, Melnik V M ,Yanchenko V I ,Rosova M A , Goncharov N P. Comparison of the genetic diversity between Triticum aestivum ssp. tibetanum Shao and Tibetan wheat landraces (Triticum aestivum L.) by using intron-splice junction primers. Euphytica, 2008, 159: 289–296

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[7] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[8] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[9] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[10] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[11] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[12] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[13] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[14] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[15] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!