Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (04): 483-495.doi: 10.3724/SP.J.1006.2017.00483

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Linkage Analysis and Genome-Wide Association Study of QTLs Controlling Stem-Breaking-Strength-Related Traits in Wheat

LIU Kai,DENG Zhi-Ying,ZHANG Ying,WANG Fang-Fang,LIU Tong-Tong,LI Qing-Fang,SHAO Wen,ZHAO Bin,TIAN Ji-Chun*,CHEN Jian-Sheng*   

  1. Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China
  • Received:2016-05-27 Revised:2016-11-02 Online:2017-04-12 Published:2016-11-29
  • Contact: Chen Jiansheng, E-mail: jshch@sdau.edu.cn; Tian Jichun, E-mail: jctian@sdau.edu.cn E-mail:liukaiyouxiang@163.com
  • Supported by:

    This study was supported by the Natural Science Foundation of Shandong Province, China (2015ZRB01179), the breeding project of “Molecular foundation for formation and improvement of main quality traits of wheat”, and the Shandong Provincial Project for Germplasm Resource Innovation.

Abstract:

Stem strengthhas close relationship with lodging character, thereby, affects final yield in wheat. The objectives of this study were to unravel the genetic mechanism of stem-breaking-strength-related traits and find molecular markers closely linked or associated with these traits. We tried to map the stem-breaking-strength-related QTLs through linkage analysis using the RIL population consisting of 173 F8:9 lines derived from Shannong 01-35 ´ Gaocheng 9411) and associationanalysis using a nature population consisting of 2015 wheat varieties. Both populations were planted in two environments and genetically screened with the 90 k SNP array, DArT technology, and traditional molecular markers.By means of the existing high-density genetic map, nine additive QTLs were detectedin different regions onchromosome 4B, such asDURUM_CONTIG63670_287–IACX557 and EX_C101685–RAC875_C27536, which controlled stem-breaking strength, plant height, filling degree of the second internode and culm wall thickness of the second internode and explained 9.40–36.30% of the phenotypic variations.By means of a composite map (containing 24,355 SNPs) based on the IlluminaInfinium assay, a total of 37 SNPs were found in the natural population to be associated withstem-breaking-strength-relatedtraits (P<0.0001). These SNPswere distributed on chromosomes1B, 2B, 2D, 3A, 3B, 4B, 5A, 5D, 6B, 7A, 7B, and 7D and explained 10.70%–36.30% of the phenotypic variations.Thegenetic distance between RAC875_C27536 detected throughlinkage analysis and Tdurum_contig4974_355 detected through genome-wide association analysis was 6.7cM in thecomposite map, indicatingthe presence of importantgenes controlling stem strengthin this region.

Key words: Common wheat, QTL mapping, Linkage analysis, Genome-wide association study (GWAS), Stem-breaking strength

[1] 姚金保,马鸿翔, 姚国才, 杨学明, 周淼平, 张平平, 张鹏.小麦抗倒性研究进展. 植物遗传资源学报, 2013, 14: 208−213
Yao J B, Ma H X, Yao G C, Yang X M, Zhao M P, Zhang P P, Zhang P. Research progress on lodging resistance in wheat(Triticum aestivum L.). J Plant Genet Resour, 2013, 14: 208−213 (in Chinese with English abstract)
[2] Hoshikawa K, Wang SB. Studies on lodging in rice plants: I. A general observation on lodged rice culms. JpnJ Crop Sci, 1990, 59: 809-814 
[3] 孟令志, 郭宪瑞, 刘宏伟, 杨丽, 买春艳, 于立强, 周阳, 张宏军. 小麦抗倒性研究进展. 麦类作物学报, 2014, 34: 1720−1727
Meng L Z, Guo X R, Liu H W, Yang L, Mai C Y, Yu L Q, Zhou Y, Zhang H J. Research progress on lodging resistance of wheat. J Triticeae Crops, 2014, 34: 1720−1727 (in Chinese with English abstract)
[4] Lin H, Guo H J, Xiao S H, Jiang G L, Zhang X Y, Yan C S,Xin Z Y,Jia J Z. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica, 2005, 141: 1–9
[5] Cook J P, Wichman D M, Martin J M, Bruckner P L, Talbert L E. Identification of microsatellite markers associated with a stem solidness locus in wheat. Crop Sci, 2004, 44: 1397−1402
[6] Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet, 2006, 112: 688−698
[7] 陈华华, 李俊, 万洪深, 王玲玲, 彭正松, 杨武云. 实心小麦86-741茎秆的解剖分析及壁厚特性的SSR标记. 作物学报, 2008, 34:1381−1385
Chen H H, Li J, Wan H S, Wang L L, Peng Z S, Yang W Y. Microsatellite markers for culm wall thickness and anatomical features of solid stem wheat 86-741. Acta Agron Sin, 2008, 34: 1381−1385 (in Chinese with English abstract)
[8] Verma V, Worland A J, Sayers E J, FishL, Caligari P D S, Snape J W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed, 2005, 124:234−241
[9] 张坤普, 赵亮, 海燕, 陈广凤, 田纪春. 小麦白粉病成株抗性和抗倒伏性及穗下节长度的QTL定位.作物学报, 2008, 34:1350−1357
Zhang K P, Zhao L, Hai Y, Chen G F, Tian J C. QTL mapping for adult-plant resistance to powdery mildew, lodging resistance and internode length below spike in wheat. Acta Agron Sin, 2008, 34: 1350−1357 (in Chinese with English abstract)
[10] Larson R I, Macdonald M D. Cytogenetics of solid stem in common wheat: II. Stem solidness of monosomic lines of the variety S-615. Can J Bot, 2011, 37: 365−378
[11] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll JS, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753−766
[12] Keller M, Karutz C, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population. Theor Appl Genet, 1999, 98: 1171−1182
[13] 关强, 张月学, 徐香玲, 孙德全, 李绥艳, 林红, 潘丽艳, 马延华. DNA分子标记的研究进展及几种新型分子标记技术. 黑龙江农业科学2008, (1): 102−104
Guan Q, Zhang Y X, Xu X L, Sun D Q, Li S Y, Lin H, Pan L Y, Ma Y H. Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agric Sci, 2008, (1): 102−104
[14] Ganal M W, Altmann T, Röder M S. SNP identification in crop plants. CurrOpin Plant Biol,2009, 12: 211−217
[15] Mick E, McGough J J, Middleton F A, Neale B, Faraone S V. Genome-wide association study of blood pressure response to methylphenidate treatment of attention-deficit/hyperactivity disorder. ProgNeuro-Psychopharmacol&BiolPsychiatry, 2011, 35:466−472
[16] Gerrard D T, Fricke C, Edward D A, Edwards D R, Chapman T. Genome-wide responses of female fruit flies subjected to divergent mating regimes.PloSOne,2013,8:e68136
[17] Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L M, Lin Z, Edward S Buckler, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42: 961−967
[18] Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene associations. Plant Cell, 2004, 16: 2719−2733
[19] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659−675
[20] Mengistu D K, Kidane Y G, Catellani M, Frascaroli E, Fadda C, Pè ME, Dell'Acqua M. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol J, 2016, 14: 1800–1812
[21] Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet, 2010,6:e1000940
[22] Myles S, Peiffer J, Brown P J, Ersoz E S, Zhang Z, Costich D E, Buckler E S. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell, 2009, 21: 2194−2202
[23] Lu Y L, Zhang S H, Sha T, Xie C X, Hao Z F, Li X H, Farkhari M, Ribaut J M, Cao M J, Rong T Z, Xu Y B, Zhang Q F. Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Agric Sci USA, 2010, 107: 19585−19590
[24] 杜庆章.利用连锁与连锁不平衡联合作图解析毛白杨重要性状的等位传变异. 北京林业大学博士学位论文, 2014. pp 156−171
Du Q Z. Dissection of Allelic Variation Underlying Important Traits in Populous tomentosa Carr.by Using Joint Linkage and Linkage Disequilibrium Mapping. PhD Dissertation of Beijing Forestry University, Beijing, China, 2014. pp 156−171 (in Chinese with English abstract)
[25] 陈广凤, 陈建省, 田纪春. 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015, 41:1500−1509
Chen G F, Chen J S, Tian J C. Genome-wide association analysis between snp markers and plant height related traits in wheat. Acta Agron Sin, 2015, 41: 1500−1509 (in Chinese with English abstract)
[26] 魏凤珍, 李金才, 王成雨, 屈会娟, 沈学善. 氮肥运筹模式对小麦茎秆抗倒性能的影响. 作物学报, 2008, 34: 1080–1085
Wei FZ, Li JC, Wang CY, QuHJ, Shen XS. Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. Acta Agron Sin, 2008, 34: 1080−1085 (in Chinese with English abstract)
[27] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦品种茎秆抗倒特性分析. 江苏农业科学, 2011, 39(2):140−142
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Yao G C, Zhang P, Zhou M P. Analysis for lodging resistance in wheat. Jiangsu Agric Sci, 2011, 39(2):140−142
[28] 陈建省, 陈广凤, 李青芳. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析. 中国农业科学, 2014, 47: 4769−4779
Chen J S, Chen G F, Li Q F. Construction of genetic map using genotyping chips and qtl analysis of grain weight. Sci Agric Sin,2014, 47:4769−4779 (in Chinese with English abstract)
[29] 肖世和, 张秀英, 闫长生, 张文祥, 海林, 郭会君. 小麦茎秆强度的鉴定方法研究. 中国农业科学, 2002, 35: 7−11
Xiao S H, Zhang X Y, Yan C S, Zhang W X, Hai L, Guo H J. Determination of resistance to lodging by stem strength in wheat. Sci Agric Sin, 2002, 35: 7−11 (in Chinese with English abstract)
[30] 闵东红, 王辉, 孟超敏, 翟耀锋, 李学军, 曹宁, 于新智. 不同株高小麦品种抗倒伏性与其亚性状及产量相关性研究. 麦类作物学报, 2001, 21(4):76−79
Min D H, Wang H, Meng C M, Zhai Y F, Li X J, Cao N, Yu X Z. Studies on the lodging resistance with its subtraits of different height wheat varieties and correlat ion between plant height and yield. J Triticeae Crops,2001, 21(4):76−79(in Chinese with English abstract)
[31] 于永红, 斯华敏. 水稻矮化相关基因的研究进展. 植物遗传资源学报,2005, 6: 344−347
Yu Y H, Si H M. Research progress on the dwarf-related gene in rice(Oryza sativa L.). J Plant Genet Resour,2005, 6(3): 344−347 (in Chinese with English abstract)
[32] Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 2010, 465:627−631
[33] 谭贤杰,吴子恺,程伟东,王天宇, 黎裕.关联分析及其在植物遗传学研究中的应用. 植物学报,2011, 46: 108−118
Tan X J, Wu Z K, Cheng W D, Wang T Y, Li Y. Association analysis and its application in plant genetic research. Chin Bull Bot,2011, 46: 108−118(in Chinese with English abstract)
[34] Qin W W, Li Y X, Wu X, Li X, Chen L, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed,2016, 36:1−9
[35] Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maizenested association mapping population. Nat Genet, 2011, 43:159–162
[36] Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler ES, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011, 7:e1002383
[37] Berry P M, Berry S T. Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica, 2015,205: 671−689
[38] Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a double haploid population. Theor Appl Genet, 1998, 96: 933−940
[39] 李卓坤, 谢全刚, 朱占玲, 刘金良, 韩淑晓, 田宾, 袁倩倩, 田纪春. 基于QTL定位分析小麦株高的杂种优势. 作物学报, 2010, 36: 771−778
Li Z K, Xie Q G, Zhu Z L, Liu J L, Han S X, Tian B, Yuan Q Q, Tian J C. Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin, 2010, 36: 771−778(in Chinese with English abstract)
[40] Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D.A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865–880
[41] Huang XQ, Cöster H, Ganal MW, Röder MS. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379–1389
[42] Liu S, Zhou R, Dong Y, Li P, Jia J. Development, utilization of introgression lines using synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360–1373
[43] Deng S M, Wu X R, Wu Y Y, Zhou R H, Wang H G, Jia J Z, Liu S B. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281–289
[1] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[2] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[3] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[4] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
[5] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[6] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[7] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[8] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[9] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[10] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[11] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
[12] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[13] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[14] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[15] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!