Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (09): 1261-1271.doi: 10.3724/SP.J.1006.2017.01261

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Cloning, Expression and Functional Analysis of Brassinosteroid Receptor Gene (ZmBRI1) from Zea MaysL.

HAO Ling,ZHANG Yu-Shi,DUAN Liu-Sheng,ZHANG Ming-Cai*,LI Zhao-Hu   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Department of Agronomy, Beijing 100193, China
  • Received:2017-02-23 Revised:2017-05-10 Online:2017-09-12 Published:2017-05-23
  • Contact: Zhang mingcai, E-mail: zmc1214@163.com, Tel: 010-62733049 E-mail:hao_ling2011@163.com
  • Supported by:

    This study was supported by the Introduction of International Advanced Agricultural Science and Technology Program (948 Program, 2011-G19).

Abstract:

Brassinosteroids (BRs) isone of very important plant steroidal hormones that are essential in a wide variety of physiological processes. In this study, an encoding brassinosteroid receptorhomologous gene was cloned by homology cloning from maizeB73 inbred lines, and designated as ZmBRI1. Sequence analysis revealed that the full length of ZmBRI1 was 3369bp, encoding 1122 amino acids. Moreover,ZmBRI1 protein was localized in cell membrane by the protein subcellular localization analysis and a ubiquitously expressed receptor kinase expressed highly in young tissues. The transformation ofZmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, including plant height, leaf morphology and pod size. Compared to bri1-5, Brassinolide (BL) inhibited significantly the root growth of transgenic lines,and Propiconazole(Pcz) inhibited the hypocotyl growth, and the expression levels of DWF4 and CPD were decreased in the transgenic plants. Furthermore, with ABA treatment, overexpression of ZmBRI1 in wild type increased the germination rate and plant growth, and decreased the expression of ABA downstream genes RD29A, RD29B, ABI5,and RAB18 compared to wild type. Therefore, ZmBRI1 was not only involved in plant morphogenesis and BR signal transduction, but also played a pivotal role in response to ABA signal.

Key words: Maize, ZmBRI1, Transgenic plant, Brassinosteroid, ABA

[1] Xia X J, Huang L F, Zhou Y H, Mao W H, Shi K, Wu J X, Asami T, Chen Z, Yu J Q. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubiseo and expression of photosynthetic genes in Cucumis sativus.Planta, 2009, 230: 1185–1196
[2] Yu J Q, Huang L F, Hu W H, Zhou Y H, Mao W H, Ye S F, Nogués S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot, 2004, 55:1135–1143
[3] Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids. Plant Cell, 2012, 24: 842–857
[4] Yang C J, Zhang C, Lu Y N, Jin J Q, Wang X L. The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant, 2011, 4:588–600
[5] Wang Z Y, Bai M Y, Oh E, Zhu J Y. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet, 2012, 46:701–724
[6] Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol, 2006, 141: 924–931
[7] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1605
[8] Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006, 140: 580–590
[9] Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol, 2003, 133: 1209–1219
[10] Clouse S D, Langford M, McMorris T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol, 1996, 111: 671–678
[11] Nomura T, Bishop G J, Kaneta T, Reid J B, Chory J, Yokota T. The LKA gene is a BRASSINOSTEROID INSENSITIVE 1 homolog of pea. Plant J, 2003, 36: 291–300
[12] Sun Y, Fokar M, Asami T, Yoshida S, Allen R D. Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol, 2004, 54: 221–232
[13] Liu T S, Zhang J P, Wang M Y, Wang Z Y, Li G F, Qu L, Wang G Y. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep, 2007, 26: 2091–2099
[14] Tao Y Z, Zheng J, Xu Z M, Zhang X H, Zhang K, Wang G Y. Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene. Plant Sci, 2004, 167: 743–751
[15] Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7(1): e30798
[16] Kir G, Ye H X, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A D, Inzé D, Sylvester A W, Yin Y H, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826–839
[17] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16:735–743
[18] Kim T W, Guan S, Burlingame A L, Wang Z Y. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell, 2011, 43:561–571
[19] Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann K A, Tax F E. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol, 1999, 121, 743–752
[20] Clouse S D, Langford M, McMorris T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol, 1996, 111: 671–678
[21] Hartwig T, Corvalan C, Best N B, Budka J S, Zhu J Y, Choe S, Schulz B. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for arabidopsis and maize. PLoS One, 2012, 7(5): e36625
[22] Wang M, Sun S, Wu C X, Han T F, Wang Q Y. Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max. Int J Mol Sci, 2014, 15:3871–3888
[23] Hu Y, Yu D. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in arabidopsis. Plant Cell, 2014, 26: 4394–4408
[24] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Harris S, Zhang K, Wang J L, Wan J M, Zhai H Q, Takatsuto S, Matsumoto S, FujiokaS, Feldmann K A, Pennell R I. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008, 20: 2130–2145

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!