Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 737-749.doi: 10.3724/SP.J.1006.2018.00737

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Maize Varieties with Different Nitrogen Efficiencies on Temporal and Spatial Distribution of Soil Nitrate and Field Nitrogen Balance

Jia-Wei QU(), Ju-Lin GAO*(), Xiao-Fang YU, Zhi-Gang WANG, Shu-Ping HU, Ji-Ying SUN, Zhi-Jun SU, Min XIE, Ge-Er QING   

  1. Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2017-05-03 Accepted:2018-01-08 Online:2018-05-20 Published:2018-01-30
  • Contact: Ju-Lin GAO E-mail:nmqujiawei@163.com;nmgaojulin@163.com
  • Supported by:
    This study was supported by the Natural Science Foundation of China (31260300), the National Science and Technology Project of Food Production of China (2013BAD07B04), the China Agriculture Research System (CARS-02-63), the Experimental Station of Crop Cultivation Scientific Observation in North China Loess Plateau (25204120), and the National Key Research and Development Project (2017YFD0300800).

Abstract:

Studying effects caused by maize varieties with different nitrogen efficiencies on nitrate content in soil and nitrogen balance in filed is quite important for excavating high nitrogen efficiency biological potential of maize varieties, coordinating nitrate supply with plant requirement, and improving the nitrogen utilization efficiency. In this study, high nitrogen efficiency maize varieties ZD958, JS27 and low nitrogen efficiency maize varieties MN2133, ND314, and SD19 were separately used to systematically study the effects on nitrate spatial and temporal distribution in soil and nitrogen balance, as well as relationship between plant nitrogen uptake and soil nitrate accumulation. Compared with low nitrogen efficiency maize varieties, the high nitrogen efficiency varieties had higher yield, higher nitrogen absorption and use efficiency in all the nitrogen treatments (0, 300, and 450 kg ha-1). According to the correlation analysis, significant negative correlation was shown between the plant nitrogen accumulation and nitrate accumulation in soil. The temporal and the spatial distribution of nitrate in soil were also analyzed, showing that the soil layer with maximum nitrate content moved toward lower gradually in the process of maize growth. The move rate of the soil layer was independent of maize varieties, but largely correlated with the precipitation. However, after silking stage the nitrate content in 60-100 centimeter layer of soil was significantly lower in high nitrogen efficiency varieties than in low nitrogen efficiency varieties. After harvest, the nitrate residual in soil was significantly higher in low nitrogen efficiency varieties compared with high nitrogen efficiency varieties. Moreover, the nitrate residual amount was largely increased with increasing nitrate application. In the aspect of nitrate balance, the nitrogen efficiency of maize significantly affected filed nitrate residue and apparent lost. The apparent nitrate lost in field in low nitrogen efficiency varieties was 2.2 (300 kg ha-1) and 1.5 times (450 kg ha-1) as high as that in high nitrogen efficiency varieties, and had much more difference among different years. Therefore, different nitrogen efficiency varieties affected N-balance in filed via nitrate absorption. Choosing high nitrogen efficiency varieties can decrease nitrate content in soil, apparent lost in field, and nitrogen leaching risk, which is an effective way to improve nitrogen utilization efficiency.

Key words: maize, variety, nitrogen efficiency, soil nitrate, field nitrogen apparent balance

Fig. 1

Total daily precipitation, daily average temperature and solar radiation of the whole growth period of maize in 2012 and 2013"

Table 1

Yield, nitrogen uptake efficiency and nitrogen recovery efficiency of different nitrogen use efficiency maize varieties"

年份Year 品种
Variety
施氮处理
Nitrogen treatment
产量
Yield (t hm-2)
氮素吸收效率
NUpE (kg kg-1)
氮肥利用率NRE (%) 氮肥农学效率NAE (kg kg-1)
2012 郑单958 ZD958 0 N 10.48 b 3.22 a
300N 13.23 a 1.10 b 39.12 a 9.14 a
450N 13.33 a 0.96 b 43.06 a 6.33 b
金山27
JS27
0 N 9.85 c 3.15 a
300N 11.63 b 1.08 b 37.24 b 5.93 b
450N 12.86 a 1.02 b 53.16 a 6.70 a
蒙农2133 MN2133 0 N 8.32 b 2.24 a
300N 9.95 a 0.82 b 32.67 a 5.43 b
450N 10.60 a 0.74 b 40.25 a 7.59 a
内单314 ND314 0 N 7.34 c 2.28 a
300N 8.65 b 0.85 b 33.42 a 4.39 b
450N 10.30 a 0.69 c 36.64 a 9.88 a
变异来源Source of variation
品种 Variety (V) ** ** ** ns
施氮处理Nitrogen treatment (NT) ** ** ** ns
品种×施氮处理V×NT ns ** ** ns
2013 郑单958 ZD958 0 N 10.56 b 2.56 a
300N 13.36 a 0.86 b 43.29 a 9.33 a
450N 14.13 a 0.75 b 45.34 a 7.93 b
内单314 ND314 0 N 8.46 c 2.05 a
300N 10.86 b 0.61 b 25.03 a 7.99 b
450N 12.83 a 0.56 b 30.69 a 9.71 a
四单19
SD19
0 N 8.84 b 2.03 a
300N 11.43 a 0.71 b 24.21 a 8.63 a
450N 12.16 a 0.58 c 33.45 a 7.37 a
变异来源Source of variation
品种 Variety (V) ** ** ** ns
施氮处理Nitrogen treatment (NT) ** ** * ns
品种×施氮处理V×NT ns * ns ns

Fig. 2

Spatial distribution of soil nitrate concentration of different nitrogen use efficiency maize varieties in V12 in 2012 Zero of X axis represents plant location, left and right sides of zero represent distance from the plant, and the maximum (25) distance is at 1/2 row spacing, Y axis represents soil depth, each datum corresponds to a small space coordinate clod of soil nitrate content, the deeper the color the greater the content of soil nitrate. Treatment described as in Table 1."

Fig. 3

Spatial distribution of soil nitrate concentration of different nitrogen use efficiency maize varieties in R1 in 2012 Treatments are the same as those described in Table 1; description of coordinate axis corresponds with that given in Fig. 2."

Fig. 4

Temporal and spatial distribution of soil nitrate concentration at silking stage (up), milking stage (middle), and maturation stage (down) in 2012 Abbreviations are the same as those given in Table 1."

Fig. 5

Temporal and spatial distribution of soil nitrate concentration at silking stage (up), milking stage(middle), and maturation stage(down) in 2013 Abbreviations are the same as those given in Table 1."

Fig. 6

Soil nitrate accumulation in maize varieties with different nitrogen efficiencies after harvest (in 2012 and 2013) Abbreviations are the same as those given in Table 1."

Fig. 7

Changes of soil nitrate accumulation and plant nitrogen accumulation in maize varieties with different nitrogen efficiencies (2012 and 2013) Abbreviations are the same as those given in Table 1."

Fig. 8

Relationship between soil nitrate accumulation and plant nitrogen accumulation Abbreviations are the same as those given in Table 1."

Table 2

Field apparent balance of soil nitrate (kg hm-2)"

品种
Variety
处理
Treatment
氮投入 N impute 氮输出N output
施氮量
Nitrogen
rate
播前
Nmin before
seeding
矿化氮
Mineral
N
总输入
Total
N
作物携出
Crop
bring
土壤硝态氮残留
Soil nitrate
residual
表观损失
Surface
loss
氮盈余
N
surplus
2012
HNE 0 N 0 344.40 150.01 494.41 334.45 c 159.96 b 0 159.96 c
300N 300 344.40 150.01 794.34 460.85 b 318.28 a 15.21 b 333.49 b
450N 450 344.40 150.01 944.34 514.29 a 343.26 a 86.79 a 430.05 a
LNE 0 N 0 344.40 146.34 490.73 237.02 c 253.71 b 0 253.71 c
300N 300 344.40 146.34 793.57 337.48 b 412.07 a 44.02 b 456.09 b
450N 450 344.40 146.34 943.57 379.13 a 429.03 a 135.41 a 564.44 a
2013
HNE 0 N 0 262.50 25.98 288.48 192.13 c 96.35 b 0 96.35 c
300N 300 262.50 25.98 588.48 322.01 b 150.19 a 116.29 b 266.47 b
450N 450 262.50 25.98 738.48 396.15 a 172.66 a 169.66 a 342.33 a
LNE 0 N 0 262.50 26.46 288.96 153.76 c 135.20 b 0 135.20 c
300N 300 262.50 26.46 588.96 228.85 b 183.62 a 176.49 b 360.11 b
450N 450 262.50 26.46 738.96 291.86 a 201.30 a 245.81 a 447.11 a

Fig. 9

Soil ammonia nitrogen accumulation in maize varieties with different nitrogen efficiencies after harvest (2012 and 2013) Abbreviations are the same as those given in Table 1."

[1] 巨晓棠, 张福锁. 中国北方土壤硝态氮的累积及其对环境的影响. 生态环境学报, 2003, 12(1): 24-28
Ju X T, Zhang F S.Nitrate accumulation and its implication to environment in north China.Ecol Environ, 2003, 12(1): 24-28 (in Chinese with English abstract)
[2] Raun W R, Johnson G V.Improving nitrogen use efficiency for cereal production.Agron J, 1999, 91: 357-363
doi: 10.2134/agronj1999.00021962009100030001x
[3] 米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. 中国科学: 生命科学, 2010, 40: 1112-1116
Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S.Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci, 2010, 40: 1112-1116 (in Chinese with English abstract)
[4] Wiesler F, Horst W J.Differences between maize cultivars in yield formation, nitrogen uptake and associated depletion of soil nitrate.J Agron Crop Sci, 1992, 168: 226-237
doi: 10.1111/j.1439-037X.1992.tb01003.x
[5] 王艳, 米国华, 陈范骏, 张福锁. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003, 23: 297-302
Wang Y, Mi G H, Chen F J, Zhang F S.Genotypic differences in nitrogen uptake by maize inbred lines its relation to root morphology. Acta Ecol Sin, 2003, 23: 297-302 (in Chinese with English abstract)
[6] Chen F J.Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth. J Plant Nutr, 2006, 29: 317-330
doi: 10.1080/01904160500476905
[7] 刘建安, 米国华, 张福锁. 玉米基因型与土壤氮素表观平衡. 中国生态农业学报, 2000, 8(2): 38-41
Liu J A, Mi G H, Zhang F S.Maize genotypes and soil nitrogen apparent balance. Chin J Eco-Agric, 2000, 8(2): 38-41 (in Chinese with English abstract)
[8] 袁新民, 王周琼. 硝态氮的淋洗及其影响因素. 干旱区研究, 2000, 17(4): 46-46
Yuan X M, Wang Z Q.Nitrate nitrogen leaching and factors influencing it.Arid Zone Res, 2000, 17(4): 46-52 (in Chinese with English abstract)
[9] 张云贵, 刘宏斌, 李志宏, 林葆, 张夫道. 长期施肥条件下华北平原农田硝态氮淋失风险的研究. 植物营养与肥料学报, 2005, 11: 711-716
doi: 10.3321/j.issn:1008-505X.2005.06.001
Zhang Y G, Liu H B, Li Z H, Lin B, Zhang D F.Study of nitrate leaching potential from agricultural land in Northern China under long-term fertilization conditions.Plant Nutr Fert Sci, 2005, 11: 711-716 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2005.06.001
[10] Li X X, Hu C S, Delgado J A, Zhang Y M, Ou-Yang Z Y. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain.Agric Water Manag, 2007, 89: 137-147
doi: 10.1016/j.agwat.2006.12.012
[11] 吕殿青, 杨学云, 张航, 戴万红, 张文孝. 陕西塿土中硝态氮运移特点及影响因素. 植物营养与肥料学报, 1996, 2: 289-296
Lyu D Q, Yang X Y, Zhang H, Dai W H, Zhang W X.Study on the characteristics of movement and leaching loss of NO3- in LOU soil in Shaanxi and its influencing factors.Plant Nutr Fert Sci, 1996, 2: 289-296 (in Chinese with English abstract)
[12] 胡春胜, 程一松, 高鹭, 李艳冬. 太行山山前平原冬小麦田深层土体硝态氮累积特征研究. 中国生态农业学报, 2001, 9(1): 19-20
doi: 10.1007/BF02951625
Hu C S, Cheng Y S, Gao L, Li Y D.On the nitrate-N accumulated characteristics in deep soil layer of winter wheat field in Taihang Piedmont.Chin J Eco-Agric, 2001, 9(1): 19-20 (in Chinese with English abstract)
doi: 10.1007/BF02951625
[13] 潘家荣, 巨晓棠, 刘学军, 张福锁, 毛达如. 高肥力土壤冬小麦/夏玉米轮作体系中化肥氮去向的研究. 核农学报, 2001, 15: 207-212
doi: 10.3969/j.issn.1000-8551.2001.04.003
Pan J R, Ju X T, Liu X J, Zhang F S, Mao D R.Fate of fertilizer N in winter wheat summer maize rotation system on high-fertility soil.Acta Agric Nucl Sin, 2001, 15: 207-212 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-8551.2001.04.003
[14] 张智猛, 戴良香, 张电学, 常连生. 冬小麦-夏玉米轮作周期内碱解氮、硝态氮时空变化及施氮安全值的研究. 土壤通报, 2004, 35(1): 38-42
Zhang Z M, Dai L X, Zhang D X, Chang L S.Study on change of Alkali hydrolysable N and NO3--N content in soil with time and space and secure use of nitrogen amount in the wheat-maize rotating system.Chin J Soil Sci, 2004, 35(1): 38-42 (in Chinese with English abstract)
[15] 石玉, 于振文. 施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响. 生态学报, 2006, 11: 3661-3669
doi: 10.3321/j.issn:1000-0933.2006.11.019
Shi Y, Yu Z W.Effects of nitrogen fertilizer rate and ratio of base and top dressing on yield of wheat, content of soil nitrate and nitrogen balance.Acta Ecol Sin, 2006, 11: 3661-3669 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2006.11.019
[16] 张经廷, 王志敏, 周顺利. 夏玉米不同施氮水平土壤硝态氮累积及对后茬冬小麦的影响, 中国农业科学, 2013, 46: 1182-1190
Zhang J T, Wang Z M, Zhou S L.Soil nitrate N accumulation under different N-fertilizer rates in summer maize and its residual effects on subsequent winter wheat.Sci Agric Sin, 2013, 46: 1182-1190 (in Chinese with English abstract)
[17] 崔超, 高聚林, 于晓芳, 王志刚, 孙继颖, 胡树平, 苏治军, 谢岷. 不同氮效率基因型高产春玉米花粒期干物质与氮素运移特性的研究. 植物营养与肥料学报, 2013, 19: 1337-1345
Cui C, Gao J L, Yu X F, Wang Z G, Sun J Y, Hu S P, Su Z J, Xie M.Dry matter accumulation and nitrogen migration of high-yielding spring maize for different nitrogen efficiency in the flowering and milking stage.Plant Nutr Fert Sci, 2013, 19: 1337-1345 (in Chinese with English abstract)
[18] 崔文芳, 王俊超, 高书晶. 不同氮水平下超高产玉米品种的产量性状分析. 河南农业科学, 2012, 41(9): 35-38
doi: 10.3969/j.issn.1004-3268.2012.09.009
Cui W F, Wang J C, Gao S J.Correlation analyses on yield traits of maize hybrids with high yield potential at different nitrogen levels. J Henan Agric Sci, 2012, 41(9): 35-38 (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-3268.2012.09.009
[19] 春亮. 玉米氮高效品种选育及根系形态对低氮反应的遗传分析. 中国农业大学博士学位论文, 北京, 2004
doi: 10.7666/d.y658786
Chun L.Breeding for Nitrogen-efficient Maize Hybrids and Genetic Analysis on Roots Morphology in Response to Low Nitrogen Stress. PhD Dissertation of China Agricultural University, Beijing, China, 2004 (in Chinese with English abstract)
doi: 10.7666/d.y658786
[20] 马存金, 刘鹏, 赵秉强, 张善平, 冯海娟, 赵杰, 杨金胜, 董树亭, 张吉旺, 赵斌. 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014, 20: 845-859
doi: 10.11674/zwyf.2014.0406
Ma C J, Liu P, Zhao B Q, Zhang S P, Feng H J, Zhao J, Yang J S, Dong S T, Zhang J W, Zhao B.Regulation of nitrogen application rate on temporal and spatial distribution of roots and nitrogen uptake in different N use efficiency maize cultivars.Plant Nutr Fert Sci, 2014, 20: 845-859 (in Chinese with English abstract)
doi: 10.11674/zwyf.2014.0406
[21] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. 中国农业科学, 2009, 42: 843-853
doi: 10.3864/j.issn.0578-1752.2009.03.011
Peng Y F, Zhang W P, Li C J.Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Sci Agric Sin, 2009, 42: 843-853 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.03.011
[22] 王激清, 刘社平, 韩宝文. 施氮量对冀西北春玉米氮肥利用率和土壤硝态氮时空分布的影响, 水土保持学报, 2011, 25(2): 138-143
Wang J Q, Liu D P, Han B W.Effects of nitrogen application on nitrogen use efficiency of spring maize and distribution of soil nitrate nitrogen in northwest Hebei province.J Soil Water Conserv, 2011, 25(2): 138-143 (in Chinese with English abstract)
[23] Mi G H, Liu J A, Chen F J, Zhang F S, Cui Z L, Liu X S.Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence.J Plant Nutr, 2001, 26: 237-247
doi: 10.1007/0-306-47624-X_32
[24] 叶东靖, 高强, 何文天, 何萍. 施氮对春玉米氮素利用及农田氮素平衡的影响. 植物营养与肥料学报, 2010, 16: 552-558
doi: 10.11674/zwyf.2010.0306
Ye D J, Gao Q, He W T, He P.Effect of N application on N utilization and N balance in spring maize.Plant Nutr Fert Sci, 2010, 16: 552-558 (in Chinese with English abstract)
doi: 10.11674/zwyf.2010.0306
[25] 李晓欣, 胡春胜, 程一松. 不同施肥处理对作物产量及土壤中硝态氮积累的影响. 干旱地区农业研究, 2003, 21(3): 38-42
Li X X, Hu C S, Cheng Y S.Different fertilizer treatments on crop yield and soil nitrate accumulation.Agric Res Arid Areas, 2003, 21(3): 38-42 (in Chinese with English abstract)
[26] Guillard K, Griffin G F, Allinson D W, Yamartino W R, Rafey M M, Pietrzyk S W.Nitrogen utilization of selected cropping systems in the us northeast: II. Soil profile nitrate distribution and accumulation.Agron J, 1995, 87: 199-207
doi: 10.2134/agronj1995.00021962008700020011x
[27] 李文娟, 何萍, 高强, 金继运, 侯云鹏, 尹彩霞, 张国辉. 不同氮效率玉米干物质形成及氮素营养特性差异研究. 植物营养与肥料学报, 2010, 16: 51-57
doi: 10.11674/zwyf.2010.0108
Li W J, He P, Gao Q, Jin J Y, Hou Y P, Yin C X, Zhang G H.Dry matter formation and nitrogen uptake in two maize cultivars differing in nitrogen use efficiency.Plant Nutr Fert Sci, 2010, 16: 51-57 (in Chinese with English abstract)
doi: 10.11674/zwyf.2010.0108
[28] 王冬梅. 不同氮效率玉米对氮素供应的农学和生物学响应机制. 吉林农业大学硕士学位论文, 吉林长春, 2011
Wang D M.The Agronomic and Biological Response Mechanism to Nitrogen Supply of Maize Differing in Different Nitrogen Efficiency. MS Thesis of Jilin Agricultural University, Changchun, China, 2011 (in Chinese with English abstract)
[29] Mackay A D, Barber S A.Effect of nitrogen on root growth of two corn genotypes in the field.Agron J, 1986, 78: 699-703
doi: 10.2134/agronj1986.00021962007800040028x
[30] 张永利, 巨晓棠. 不同植物轮作提取深层土壤累积硝态氮的效果, 中国农业科学, 2012, 45: 3297-3309
doi: 10.3864/j.issn.0578-1752.2012.16.009
Zhang Y L, Ju X T.Mining the accumulated nitrate from deep soil layers by rotation with different crops.Sci Agric Sin, 2012, 45: 3297-3309 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.16.009
[31] Wiesler F, Horst W J.Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching.Plant Soil, 1993, 151: 193-203
doi: 10.1007/BF00016284
[32] 王敬锋, 刘鹏, 赵炳强, 董树亭, 张吉旺, 赵明, 杨吉顺, 李耕. 不同基因型玉米根系特征与氮素吸收利用的差异. 中国农业科学, 2011, 44: 699-707
Wang J F, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao M, Yang J S, Li G.Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes.Sci Agric Sin, 2011, 44: 699-707 (in Chinese with English abstract)
[33] 米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13: 155-159
doi: 10.3321/j.issn:1008-505X.2007.01.026
Mi G H, Chen F J, Chun L, Guo Y F, Tian Q Y, Zhang F S.Biological characteristics of nitrogen efficient maize genotypes. Plant Nutr Fert Sci, 2007, 13: 155-159 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2007.01.026
[34] Zhao R F, Chen X P, Zhang F S, Zhang H L, Schroder J, Romheld V.Fertilization and nitrogen balance in a wheat-maize rotation system in North China.Agron J, 2006, 98: 938-945
doi: 10.2134/agronj2005.0157
[35] 李世清, 李生秀. 半干旱地区农田生态系统中硝态氮的淋失. 应用生态学报, 2000, 11: 240-242
Li S Q, Li S X.Leaching loss of nitrate from semiarid area agro-ecosystem.Chin J Appl Ecol, 2000, 11: 240-242 (in Chinese with English abstract)
[36] OECD. Environmental Indicators for Agriculture, Methods and Results. Organization for Economic Co-operation and Development, Paris, France, 2001
[37] Yli Viikari A, Hietala Koivu R, Huusela Veistola E, Hyvonen T, Perala P, Turtola E.Evaluating agri-environmental indicators (AEIs)-use and limitations of international indicators at national level.Ecol Indic, 2007, 7: 150-163
doi: 10.1016/j.ecolind.2005.11.005
[38] Goulding K, Jarvis S, Whitmore A.Optimizing nutrient management for farm systems.Philos Tran R Soc B, 2008, 363: 667-680
doi: 10.1098/rstb.2007.2177 pmid: 17652069
[39] 周顺利, 张福锁, 王兴仁. 土壤硝态氮时空变异与土壤氮素表观盈亏: II. 夏玉米. 生态学报, 2002, 22: 48-53
Zhou S L, Zhang F S, Wang X R.The spatio-temporal variations of soil NO3--N and apparent budget of soil nitrogen: II. Summer maize.Acta Ecol Sin, 2002, 22: 48-53 (in Chinese with English abstract)
[40] 淮贺举, 张海林, 蔡万涛, 陈阜. 不同施氮水平对春玉米氮素利用及土壤硝态氮残留的影响. 农业环境科学学报, 2009, 28: 2651-2656
doi: 10.3321/j.issn:1672-2043.2009.12.033
Huai H J, Zhang H L, Cai W T, Chen F.Effect of different nitrogen rates on nitrogen utilization and residual soil nitrate of spring maize.J Agro-Environ Sci, 2009, 28: 2651-2656 (in Chinese with English abstract)
doi: 10.3321/j.issn:1672-2043.2009.12.033
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[12] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[13] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[14] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[15] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!