Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1433-1441.doi: 10.3724/SP.J.1006.2018.01433

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Function Analysis of ZmNAOD Gene in Maize

Chen-Yu MA,Wei-Min ZHAN,Wen-Liang LI,Meng-Di ZHANG,Zhang-Ying XI()   

  1. Agronomy College, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2018-03-13 Accepted:2018-06-12 Online:2018-10-10 Published:2018-07-02
  • Contact: Zhang-Ying XI E-mail:xizhangying@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371629)

Abstract:

The development of kernels and the photoperiod characters are key elements that impact yield in maize. A N-acetylornithine deacctylase (NAOD) gene named ZmNAOD was cloned from maize inbred line Chang 7-2 by the method of RT-PCR in our work. The length of CDS (coding DNA sequence) in ZmNAOD gene is 1344 bp, coding a polypeptide of 447 amino acids. The expression of ZmNAOD was abundant in tassel, kernel, leaf, stem and root successively, and was up-regulated in seed from 0 to 15 d, and down-regulated after 15 d. The over-expression recombinant plasmid, pCAMBIA1304-ZmNAOD, was transformed into Arabidopsis using Agrobacterium mediated method, and homogeneous transgenic lines were obtained. The ZmNAOD gene expression was abundant in roots of transgenic Arabidopsis, and the root length was significantly longer than that of the wild type (WT) after a 10-day dark treatment. Flowering days of transgenic lines were earlier, the seeds were longer and the thousand seed weight was heavier than those of the WT. These results demonstrated that the ZmNAOD might be involved in seed development and photoperiod.

Key words: maize, gene cloning, genetic modification, seed development, photoperiod

Fig. 1

DNA coding sequence and amino acid alignments of ZmNAOD"

Fig. 2

Phylogenetic analysis of NAOD proteins in plants"

Table 1

Prediction cis-elements of ZmNAOD promoter with database analysis"

功能
Function
元件名称(核心序列)
Element (core sequence)
胚乳表达元件 cis-acting regulatory element required for endosperm expression Skn-1_motif (GTCAT), GCN4_motif (TGTGTCA)
昼夜节律控制元件 cis-acting regulatory element involved in circadian control Circadian (CAANNNNATC)
光响应相关元件 cis-acting regulatory element involved in light responsiveness G-box (CACGTC), Sp1 (CC(G/A)CCC)
与光响应相关保守 DNA模块
Part of a conserved DNA module involved in light responsiveness
ATCT-motif (AATCTGATCG)
部分光响应相关元件 Part of a light responsive element



LAMP-element (CTTTATCA), Box II (GTGAGGTAATAT), CATT-motif (GCATTC), GAG-motif (AGAGATG), GA-motif (ATAGATAA), I-box (aAGATAAGA),
TGGCA-motif (GATGGAAGTGGCA)
脱落酸响应元件 cis-acting element involved in the abscisic acid responsiveness ABRE (AGTACGTGGC)
生长素响应相关元件
cis-acting regulatory element involved in auxin responsiveness
AuxRR-core (GGTCCAT)
茉莉酸甲酯响应元件
cis-acting regulatory element involved in the MeJA-responsiveness
CGTCA-motif (CGTCA), TGACG-motif (TGACG)
水杨酸响应元件 cis-acting element involved in salicylic acid responsiveness TCA-element (TCAGAAGAGG)
热响应相关元件 cis-acting element involved in heat stress responsiveness HSE (AAAAAATTTC)
低温响应元件 cis-acting element involved in low-temperature responsiveness LTR (CCGAAA)
MYB结合位点 MYB binding site involved in drought-inducibility MBS (TAACTG)
逆境响应元件 cis-acting element involved in defense and stress responsiveness TC-rich repeats (ATTTTCTTCA)

Fig. 3

Relative expression of ZmNAOD gene in different organs in Chang 7-2"

Fig. 4

Relative expression of ZmNAOD gene in kernel at different days after pollination"

Fig. 5

Relative expression of ZmNAOD gene in wild type (WT) and transgenic lines"

Fig. 6

Relative expression of ZmNAOD gene in different organs of transgenic plant"

Table 2

Flowering time in wild type and transgenic lines"

野生型 Wild type T3-17 T3-23 T3-26
第1朵可见花序的天数 Days of the first buds visible (d) 37.60±0.47 36.08±0.42* 34.80±1.08** 36.00±0.53*
第1朵花开花的天数 Days of the first flower visible (d) 48.23±0.55 46.96±0.64* 43.00±0.72** 46.00±0.65**

Fig. 7

Flowering phenotype observed in transgenic lines and wild type lines at 45 days after sowing 1, 2: transgenic lines T3-23; 3, 4: wild type lines."

Table 3

Analysis of seed phenotype of wild type and transgenic lines"

野生型
Wild type
转基因T3-17
Transgenic T3-17
转基因T3-23
Transgenic T3-23
转基因T3-26
Transgenic T3-26
粒长 Seed length (mm) 0.7857±0.0380 0.8936±0.0449** 0.9004±0.0527** 0.9029±0.0564**
粒宽 Seed width (mm) 0.6682±0.0259 0.6798±0.0128 0.6656±0.0315 0.6646±0.0220
千粒重 Thousand-seed weight (mg) 13.353±0.122 14.233±0.031** 14.249±0.137** 14.222±0.152**
[1] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169 pmid: 18604208
[2] Moles A T, Ackerly D D, Webb C O, Tweddle J C, Dickie J B, Westoby M . A brief history of seed size. Science, 2005,307:576-580
doi: 10.1126/science.1104863 pmid: 15681384
[3] Andres F, Coupland G . The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012,13:627-639
doi: 10.1038/nrg3291 pmid: 22898651
[4] Slocum R D . Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem, 2005,43:729-745
doi: 10.1016/j.plaphy.2005.06.007 pmid: 20202022020202020202020
[5] Shargool D, Jain J C, Mckay G . Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry, 1988,27:1571-1574
doi: 10.1016/0031-9422(88)80404-7
[6] Caldovic L, Tuchman M . N-acetylglutamate and its changing role through evolution. Biochem J, 2003,372:279-290
doi: 10.1042/BJ20030002 pmid: 12633501
[7] Carbonell J, Navarro J L . Correlation of spermine levels with ovary senescence and with fruit set and development in Pisum sativum L. Planta, 1989,178:482-487
[8] Evans P T, Malmberg R L . Do polyamines have roles in plant development? Annu Rev Plant Physiol, 1989,40:235-269
doi: 10.1146/annurev.pp.40.060189.001315
[9] Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T . Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol, 2004,135:1565-1573
doi: 10.1104/pp.104.041699
[10] Liu J, Nada K, Pang X, Honda C, Kitashiba H, Moriguchi T . Role of polyamines in peach fruit development and storage. Tree Physiol, 2006,26:791-798
doi: 10.1093/treephys/26.6.791 pmid: 16510395
[11] Tiburcio A F, Altabella T, Bitrián M, Alcázar R . The roles of polyamines during the lifespan of plants: from development to stress. Planta, 2014,240:1-18
doi: 10.1007/s00425-014-2055-9 pmid: 24659098
[12] Molesini B, Mennella G, Martini F, Francese G, Pandolfini T . Involvement of the putativeN-acetylornithine deacetylase from Arabidopsis thaliana in flowering and fruit development. Plant Cell Physiol, 2015,56:1084-1096
[13] Molesini B, Zanzoni S, Mennella G, Francese G, Losa A, L Rotino G, Pandolfini T . The Arabidopsis N-acetylornithine deacetylase controls ornithine biosynthesis via a linear pathway with downstream effects on polyamine levels. Plant Cell Physiol, 2017,58:130-144
[14] Fabi J P, Seymour G B, Graham N S, Broadley M R, May S T, Lajolo F M, Cordenunsi B R , Oliveira do Nascimento J R. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray. BMC Plant Biol, 2012,12:242-261
doi: 10.1186/1471-2229-12-242 pmid: 3562526
[15] Molesini B, Rotino G L, Spena A, Pandolfini T . Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res Notes, 2009,2:143-149
doi: 10.1186/1756-0500-2-143 pmid: 2718906
[16] Petersen T N , Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011,8:785-786
doi: 10.1038/nmeth.1701 pmid: 21959131
[17] Kumar S, Stecher G, Tamura K . MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016,33:1870-1874
doi: 10.1093/molbev/msw054 pmid: 27004904
[18] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S . PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002,30:325-327
doi: 10.1093/nar/30.1.325
[19] Wang X T, Wu L J, Zhang S F, Wu L C, Ku L X, Wei X M, Xie L L, Chen Y H . Robust expression and association of ZmCCA1 with circadian. Plant Cell Rep, 2011,30:1261-1272
[20] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451
doi: 10.1006/meth.2001.1266
[21] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743
[22] Williams K, Munkvold J, Sorrells M . Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica, 2013,190:99-116
[23] Upadyayula N, da Sliva H S, Bohn M O, Rocheford T R . Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[24] Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D . The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev, 2001,15:2755-2766
[25] Bommert P, Nagasawa N S, Jackson D . Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 2013,45:334-337
doi: 10.1038/ng.2534 pmid: 23377180
[26] Chuck G S, Brown P J, Meeley R, Hake S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA, 2014,111:18775-18780
[27] Thomas T L . Gene expression during plant embryogenesis and germination: an overview. Plant Cell, 1993,5:1401-1410
doi: 10.2307/3869791 pmid: 8281041
[28] 张冬梅, 刘洋, 赵永锋, 祝丽英, 黄亚群, 郭晋杰, 陈景堂 . 不同杂种优势群玉米籽粒灌浆速率分析. 中国农业科学, 2014,47:3323-3335
Zhang D M, Liu Y, Zhao Y F, Zhu L Y, Huang Y Q, Guo J J, Chen J T . Analysis of maize grain filling rate in different heterotic groups. Sci Agric Sin, 2014,47:3323-3335 (in Chinese with English Abstract)
[29] Pandolfini T, Molesini B, Spena A. Fruit development and seed dispersal. In: Østergaard L, ed. Annual Plant Reviews. UK: Wiley Blackwell Press, 2009, Vol 38, pp 326-345
[30] Qiao D H, Dong Y B, Zhang L, Zhou Q, Hu C H, Ren Y L, Li Y L . Ectopic expression of the maize ZmADF3 gene in Arabidopsis revealing its functions in kernel development. Plant Cell Tissue Organ Cult, 2016,126:239-253
[31] Millar A J, Kay S A . Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA, 1996,93:15491-15496
[32] Terzaghi W B, Cashmore A R . Light-regulated transcription. Annu Rev Plant Biol, 1995,46:445-474
doi: 10.1146/annurev.pp.46.060195.002305
[33] Tobin E M, Kehoe D M . Phytochrome-regulated gene expression. Semin Cell Biol, 1994,5:335-346
doi: 10.1006/scel.1994.1040
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[7] XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824.
[8] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!