Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1459-1467.doi: 10.3724/SP.J.1006.2018.01459

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Cold-tolerance During Germination Stage and Genetic Diversity of SSR Markers in Peanut Landraces of Shanxi Province

Dong-Mei BAI1,*(),Yun-Yun XUE1,Jiao-Jiao ZHAO2,Li HUANG2,Yue-Xia TIAN1,Bao-Quan QUAN1,Hui-Fang JIANG2,*()   

  1. 1 Industrial Crops Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi, China
    2 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
  • Received:2018-02-24 Accepted:2018-06-12 Online:2018-10-10 Published:2018-07-03
  • Contact: Dong-Mei BAI,Hui-Fang JIANG E-mail:baidm1221@163.com;peanut@oilcrops.com
  • Supported by:
    This study was supported by the China Agricultural Research System(CARS-13);the Biological Breeding Project of Shanxi Academy of Agricultural Sciences(17yzgc051);the Science and Technology Independent Innovation Ability Enhancement Project of Shanxi Academy of Agricultural Sciences(2017zzlx-07)

Abstract:

Cold injury is one of the main factors causing yield and quality decline in peanut. Cultivating and planting varieties with high and stable yield and strong cold tolerance is an ideal way to reduce cold injury, However, the lack of high cold tolerant germplasm and the difficulty of cold tolerance identification are the main reasons to limit the breakthrough of cold tolerance breeding. In this study, 72 local peanut varieties in Shanxi province were identified for cold tolerance at germination stage. Based on their relative germination rate and relative germination index, the cold tolerance of 72 peanut cultivars we preliminarily divided the 72 peanut cultivars into five grades, namely high-cold-tolerant type, cold-tolerant type, middle type, sensitive type, and high sensitive type. Ninety pairs of SSR primers with good polymorphism were used to evaluate the peanut cultivars with different cold-tolerance levels, and to examine the genetic diversity of cold-tolerant peanut landraces in Shanxi province making rational and efficient use of cold tolerant peanut resources. The tested cultivars were highly different in genetic diversity and were clustered into three groups with genetic distance of 0.4. Three high-cold-tolerant cultivars and seven cold-tolerant cultivars were clustered into three different groups, indicating that the cold-tolerant peanut varieties are rich in genetic diversity.

Key words: peanut, landraces, cold-tolerance at germination stage, genetic diversity

Table 1

Landrace type and origin of 72 peanuts from Shanxi province"

编号
Code
品种
Cultiver
植物学类型
Botanical type
编号
Code
品种
Cultiver
植物学类型
Botanical type
1 汾西小粒Fenxixiaoli 珍珠豆型vulgaris 37 洪洞花生4 Hongtonghuasheng 4 普通型hypogaea
2 襄汾油花生Xiangfenyouhuasheng 多粒型fastigiata 38 洪洞大粒Hongtongdali 普通型hypogaea
3 隰县一把抓Xixianyibazhua 普通型hypogaea 39 乡宁花生Xiangninghuasheng 普通型hypogaea
4 洪洞花生5 Hongtonghuasheng 5 多粒型fastigiata 40 临汾小粒Linfenxiaoli 普通型hypogaea
5 难山小粒 Nanshanxiaoli 珍珠豆型vulgaris 41 临汾一窝蜂Linfenyiwofeng 多粒型fastigiata
6 吉县大花生Jixiandahuasheng 普通型hypogaea 42 高平花生Gaopinghuasheng 普通型hypogaea
7 大宁大花生Daningdahuasheng 普通型hypogaea 43 黎城花生Lichenghuasheng 普通型hypogaea
8 太谷二粒Taiguerli 珍珠豆型vulgaris 44 长子花生Zhangzihuasheng 多粒型fastigiata
9 石楼小粒Shilouxiaoli 珍珠豆型vulgaris 45 运城花生 Yunchenghuasheng 普通型hypogaea
10 临县多粒Linxianduoli 珍珠豆型vulgaris 46 新绛大花生Xinjiangdahuasheng 普通型hypogaea
11 安泽落花生Anzeluohuasheng 多粒型fastigiata 47 永济爬地垄Yongjipadilong 普通型hypogaea
12 吉县大粒秧Jixiandaliyang 普通型hypogaea 48 平陆大粒Pingludali 普通型hypogaea
13 翼城花生Yichenghuasheng 珍珠豆型vulgaris 49 稷山花生Jishanhuasheng 普通型hypogaea
14 浮山一把抓Fushanyibazhua 普通型hypogaea 50 榆次花生Yucihuasheng 普通型hypogaea
15 中阳花生Zhongyanghuasheng 普通型hypogaea 51 榆次伏花生Yucifuhuasheng 普通型hypogaea
16 沁水花生Qinshuihuasheng 普通型hypogaea 52 灵石小花生Lingshixiaohuasheng 珍珠豆型vulgaris
17 黎城花生Lichenghuasheng 普通型hypogaea 53 太谷大粒Taigudali 普通型hypogaea
18 运城小角花Yunchengxiaojiaohuasheng 普通型hypogaea 54 阳曲花生Yangquhuasheng 普通型hypogaea
19 运城大蔓花生Yunchengdamanhuasheng 普通型hypogaea 55 文水大花生Wenshuidahuasheng 普通型hypogaea
20 稷山小蔓Jishanxiaoman 普通型hypogaea 56 文水多粒Wenshuiduoli 多粒型fastigiata
21 垣曲长蔓Yuanquchangman 普通型hypogaea 57 汾阳大粒Fenyangdali 普通型hypogaea
22 祁县小花生Qixianxiaohuasheng 珍珠豆型vulgaris 58 汾阳多粒Fenyangduoli 多粒型fastigiata
23 兴县大花生Xingxiandahuasheng 普通型hypogaea 59 汾阳四粒红Fenyangsilihong 多粒型fastigiata
24 文水花生Wenshuihuasheng 普通型hypogaea 60 柳林二粒Liulinerli 普通型hypogaea
25 孝义花生Xiaoyihuasheng 普通型hypogaea 61 榆社花生Yushehuasheng 珍珠豆型vulgaris
26 临县大粒Linxiandali 普通型hypogaea 62 榆社红花生Yushehonghuasheng 多粒型fastigiata
27 临县小粒Linxianxiaoli 普通型hypogaea 63 榆社大粒Yushedali 普通型hypogaea
28 交口花生Jiaokouhuasheng 普通型hypogaea 64 曲沃一窝蜂Quwoyiwofeng 多粒型fastigiata
29 汾阳小粒Fenyangxiaoli 普通型hypogaea 65 洪洞花生1 Hongtonghuasheng 1 普通型hypogaea
30 柳林花生Liulinhuasheng 普通型hypogaea 66 武乡花生Wuxianghuasheng 普通型hypogaea
31 侯马大粒 Houmadali 普通型hypogaea 67 武乡白花生Wuxiangbaihuasheng 珍珠豆型vulgaris
32 吉县大粒1 Jixiandali 1 普通型hypogaea 68 武乡黑花生Wuxiangheihuasheng 普通型hypogaea
33 吉县大粒蔓Jixiandaliman 普通型hypogaea 69 武乡多粒Wuxiangduoli 多粒型fastigiata
34 曲沃小花生Quwoxiaohuasheng 普通型hypogaea 70 武乡彩粒Wuxiangcaili 普通型hypogaea
35 曲沃一把抓Quwoyibazhua 普通型hypogaea 71 河曲大粒Hequdali 普通型hypogaea
36 大宁一把抓Daningyibazhua 普通型hypogaea 72 柳林小粒Liulinxiaoli 普通型hypogaea

Fig. 1

Germination of part peanut seeds under low temperature stress"

Table 2

Identification of cold-tolerant the cultivars in the present study"

基因型
Gene type
编号
Code
相对发芽率 Relative germination rate (%) 相对发芽指数 Relative germination index (%)
2016 2017 Mean 2016 2017 Mean
高耐寒 10 92.27 94.44 93.36 93.01 91.29 92.15
High cold-tolerant 46 96.64 96.36 96.50 94.20 94.71 94.46
50 94.64 93.10 93.87 90.15 94.03 92.09
耐寒 1 94.44 92.72 93.58 86.14 85.09 85.62
Cold-tolerant 2 90.60 92.30 91.45 81.47 81.70 81.59
24 94.64 92.47 93.56 85.93 86.23 86.08
44 98.56 92.72 95.64 81.42 86.81 84.12
47 94.34 92.98 93.66 87.55 88.87 88.21
63 93.57 92.72 93.15 87.07 89.59 88.33
64 98.18 94.23 96.21 84.00 82.08 83.04
中间 9 64.78 76.47 70.63 51.18 53.20 52.19
Middle 15 55.12 60.34 57.73 51.69 51.45 51.57
23 71.69 68.52 70.11 55.64 54.34 54.99
25 51.77 54.54 53.16 53.91 55.52 54.72
32 86.50 78.42 82.46 62.95 61.72 62.34
33 86.60 78.97 82.79 68.64 62.15 65.40
34 77.35 76.36 76.86 55.80 55.15 55.48
36 62.71 74.54 68.63 52.54 52.14 52.34
37 70.33 66.67 68.50 50.73 52.31 51.52
38 77.35 70.59 73.97 52.35 54.28 53.32
39 63.00 55.36 59.18 50.13 50.20 50.17
40 88.47 79.25 83.86 51.72 57.93 54.83
41 59.22 64.81 62.02 50.27 53.71 51.99
49 82.95 80.36 81.66 58.19 58.06 58.13
57 54.70 50.00 52.35 51.67 52.61 52.14
60 55.12 52.63 53.88 50.33 50.68 50.51
69 73.01 72.22 72.62 51.90 60.75 56.33
基因型
Gene type
编号
Code
相对发芽率 Relative germination rate (%) 相对发芽指数 Relative germination index (%)
2016 2017 Mean 2016 2017 Mean
敏感 3 28.55 31.47 30.01 33.36 31.33 32.35
Sensitive 4 31.41 32.73 32.07 40.62 34.00 37.31
5 48.11 37.50 42.81 42.97 40.00 41.49
6 43.18 43.63 43.41 31.59 29.32 30.46
7 16.67 21.81 19.24 36.85 27.72 32.29
8 29.27 29.82 29.55 31.91 32.17 32.04
11 41.18 33.33 37.26 20.61 23.27 21.94
12 40.37 38.89 39.63 36.89 34.07 35.48
13 30.68 29.63 30.16 23.95 24.78 24.37
14 33.93 41.81 37.87 49.76 47.43 48.60
16 36.01 33.93 34.97 38.36 35.65 37.01
17 28.84 27.78 28.31 35.59 34.87 35.23
18 30.80 32.73 31.77 23.17 27.10 25.14
19 29.41 32.68 31.05 35.57 33.08 34.33
20 22.88 28.84 25.86 37.53 38.47 38.00
21 22.22 21.82 22.02 29.78 28.45 29.12
22 26.39 25.92 26.16 25.62 27.28 26.45
26 37.71 35.71 36.71 23.47 23.72 23.60
27 36.19 36.84 36.52 31.32 29.26 30.29
28 35.69 29.82 32.76 20.67 21.30 20.99
29 35.90 34.55 35.23 21.16 21.12 21.14
30 49.95 46.55 48.25 27.91 30.77 29.34
35 41.18 31.48 36.33 34.88 31.58 33.23
42 39.34 33.93 36.64 31.05 32.78 31.92
43 47.51 48.28 47.90 40.62 39.76 40.19
45 21.05 38.18 29.62 21.64 25.45 23.55
48 39.64 33.33 36.49 29.29 30.76 30.03
51 29.67 30.35 30.01 28.36 25.78 27.07
52 26.32 21.43 23.88 25.14 24.19 24.67
53 16.67 30.90 23.79 36.80 34.28 35.54
54 28.79 29.82 29.31 19.77 19.86 19.82
55 24.97 36.36 30.67 20.66 22.69 21.68
58 48.23 49.13 48.68 32.72 38.17 35.45
59 24.53 29.82 27.18 40.78 34.90 37.84
61 35.69 34.55 35.12 35.37 34.58 34.98
62 15.79 15.25 15.52 36.80 21.39 29.10
65 33.37 35.71 34.54 29.35 30.18 29.77
66 32.64 30.90 31.77 29.48 23.86 26.67
67 43.18 47.26 45.22 34.22 28.71 31.47
68 33.33 33.93 33.63 27.82 31.45 29.64
70 36.19 33.90 35.05 25.21 26.44 25.83
71 48.23 50.00 49.12 37.68 37.61 37.65
72 16.08 21.82 18.95 30.50 30.58 30.54
高感 31 8.20 11.76 9.98 18.20 16.90 17.55
High-sensitive 56 6.82 6.90 6.86 16.09 9.64 12.87

Fig. 2

Amplified bands using primer A06B209 in 72 peanuts materials"

Table 3

Genetic parameters of 90 SSR markers used in this study"

项目
Item
等位基因数Allele number (Na) 主基因频率
Major allele frequency
(MAF)
基因多样性指数
Gene diversity
(GD)
多态信息含量指数
Polymorphism information content (PIC)
Shannon’s信息指数
Shannon’s information index (I)
最大值 Max 8 0.8986 0.7711 0.7378 1.6734
最小值 Min 2 0.2917 0.1823 0.1657 0.3283
合计 Total 317
平均值 Mean 3.5222 0.6834 0.4537 0.4047 0.8092

Fig. 3

Dendrogram of 72 peanut landraces in Shanxi province based on SSR markers"

[1] 禹山林 . 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 1-5
Yu S L. Peanut Varieties and Pedigree in China. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 1-5(in Chinese)
[2] 万书波 . 中国花生栽培学. 上海: 上海科学技术出版社, 20013. pp 20-21
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2013. pp 20-21(in Chinese)
[3] 沈浩, 刘登义 . 遗传多样性概述. 生物学杂志, 2001,18(2):4-7
Shen H, Liu D Y . Summary of genetic diversity. Chin J Biol, 2001,18(2):4-7 (in Chinese with English abstract)
[4] 白冬梅, 王国桐, 薛云云, 田跃霞, 权宝全 . 山西省地方花生品种农艺性状的遗传多样性分析. 山西农业科学, 2014,42:542-547
Bai D M, Wang G T, Xue Y Y, Tian Y X, Quan B Q . Analysis of genetic diversity of Shanxi peanut landrace based on agronomic traits. Shanxi Agric Sci, 2014,42:542-547 (in Chinese with English abstract)
[5] 白冬梅, 王国桐, 薛云云, 田跃霞, 权宝全 . 山西省地方花生种质资源品质性状的综合评价. 中国农学通报, 2014,30(24):187-193
Bai D M, Wang G T, Xue Y Y, Tian Y X, Quan B Q . Comprehensive evaluation of peanut germplasm resources in Shanxi province based on quality traits. Chin Agric Sci Bull, 2014,30(24):187-193 (in Chinese with English abstract)
[6] Cuc L M, Mace E S, Crouch J H, Quang V D, Long T D, Varshney R K . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated ground-nut (Arachis hypogaea L.). BMC Plant Biol, 2008,8:55
[7] 陈本银, 姜慧芳, 廖伯寿, 任小平, 黄家权, 雷永, 王圣玉 . 野生花生种质的 SSR 遗传多样性. 热带亚热带植物学报, 2008,16:296-303
doi: 10.3969/j.issn.1005-3395.2008.04.002
Chen B Y, Jiang H F, Liao B S, Ren X P, Huang J Q, Lei Y, Wang S Y . Genetic diversity analysis of Arachis gerplasm by SSR. J Trop Subtrop Bot, 2008,16:296-303 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-3395.2008.04.002
[8] Lin K . Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129
doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[9] Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S . Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004,108:1064-1070
doi: 10.1007/s00122-003-1535-2 pmid: 15067392
[10] He G H, Meng R H, Newman M, Gao G Q, Pittman R N, Prakash C S . Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003,3:3
[11] 任小平, 张晓杰, 廖伯寿, 雷永, 黄家权, 陈玉宁, 姜慧芳 . ICRISAT 花生微核心种质资源SSR 标记遗传多样性分析. 中国农业科学, 2010,43:2848-2858
Ren X P, Zhang X J, Liao B S, Lei Y, Huang J Q, Chen Y N, Jiang H F . Analysis of genetic diversity in ICRISAT mini core collection of peanut( Arachis hypogaea L.) by SSR markers.Sci Agric Sin, 2010, 43:2848-2858 (in Chinese with English abstract)
[12] 封海胜 . 花生种子吸胀期间耐低温性鉴定. 中国油料, 1991, ( 1):67-70
Feng H S . Identification on low temperature resistance of peanut seed during imbibition stage. Chin Oil Crop Sci, 1991, ( 1):67-70 (in Chinese)
[13] 刘海龙, 陈小姝, 杨富军, 白冬梅, 孙晓苹, 吕永超, 任小平, 姜慧芳, 高华援 . 花生种质资源耐低温表型鉴定方法研究. 花生学报, 2017,46:20-25
doi: 10.14001/j.issn.1002-4093.2017.03.004
Liu H L, Chen X S, Yang F J, Bai D M, Sun X P, Lyu Y C, Ren X P, Jiang H F, Gao H Y . Research of identification method on low temperature resistance of peanut germpasm resources phenotype. J Peanut Sci, 2017,46:20-25 (in Chinese with English abstract)
doi: 10.14001/j.issn.1002-4093.2017.03.004
[14] 吕建伟, 马天进, 李正强, 陈锋, 姜慧芳 . 花生种质资源出苗期耐低温性鉴定方法及应用. 花生学报, 2014,43(3):13-18
Lyu J W, Ma T J, Li Z Q, Chen F, Jiang H F . Identification method of low temperature tolerance on peanut germplasm resource. J Peanut Sci, 2014,43(3):13-18 (in Chinese with English abstract)
[15] 唐月异, 王传堂, 高华媛, 凤桐, 张树伟, 王秀贞, 张建成, 禹山林 . 花生种子吸胀期间耐低温性及其与品质性状的相关研究. 核农学报, 2011,25:436-442
Tang Y Y, Wang C T, Gao H Y, Feng T, Zhang S W, Wang X Z, Zhang J C, Yu S L . Low temperature tolerance during seed imbibition and its relationship to main quality in peant. Acta Agric Nucl Sin, 2011, 25:436-442 (in Chinese with English abstract)
[16] 常硕其, 邓启云, 罗祎, 陈小龙 . 超级杂交稻及其亲本的耐冷性研究. 杂交水稻, 2015,30(1):51-57
Chang S Q, Deng Q Y, Luo W, Chen X L . Research on low temperature tolerance in super hybrid rice and parent. Hybrid Rice, 2015,30(1):51-57 (in Chinese with English abstract)
[17] 康旭梅, 李小湘, 潘孝武, 刘文强 . 普通野生稻耐冷性研究进展. 杂交水稻, 2017,32(2):1-5
doi: 10.16267/j.cnki.1005-3956.201702001
Kang X M, Li X X, Pan X W, Liu W Q . Research progress on low temperature tolerance in Oryza rufipogon Griff. Hybrid Rice, 2017, 32(2):1-5 (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201702001
[18] Subramanian V, Gurtu S, Rao R C N, Nigam S N . Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome, 2000,43:656-660
doi: 10.1139/g00-034
[19] Tang R H, Gao G Q, He L Q, Han Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang J, Li Y R, Zhuang W J . Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genomics, 2007,34:449-459
doi: 10.1016/S1673-8527(07)60049-6 pmid: 17560531
[20] 林茂, 李正强, 郑治洪, 吕建伟, 马天进, 李超, 阚健全 . 贵州省花生地方品种的遗传多样性. 作物学报, 2012,38:1387-1396
Lin M, Li Z Q, Zheng Z H, Lyu J W, Ma T J, Li C, Kan J Q . Genetic diversity of peanut landraces in Guizhou province. Acta Agron Sin, 2012,38:1387-1396 (in Chinese with English abstract)
[21] 姜慧芳, 任小平, 廖伯寿, 黄家权, 雷永, 陈本银, Guo B Z, Holbrook C C, Upadhyaya H D . 中国花生核心种质的建立及与ICRISAT 花生微核心种质的比较. 作物学报, 2008,34:25-30
doi: 10.3724/SP.J.1006.2008.00025
Jiang H F, Ren X P, Liao B S, Huang J Q, Lei Y, Chen B Y, Guo B Z, Holbrook C C, Upadhyaya H D . Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin, 2008,34:25-30 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00025
[22] Han Z Q, Gao G Q, Wei P X, Tang R H, Zhong R C . Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using micro-satellite markers. Acta Agron Sin, 2004,30:1097-1101
[23] 洪彦彬, 梁炫强, 陈小平, 林坤耀, 周桂元, 李少雄, 刘海燕 . 花生栽培种(Arachis hypogaea L.)类型间遗传差异的SSR分析. 分子植物育种, 2008,6:71-78
Hong Y B, Liang X Q, Chen X P, Lin K Y, Zhou G Y, Li S X, Liu H Y . Genetic differences in peanut cultivated types (Arachis hypogaea L.) revealed by SSR polymorphism. Mol Plant Breed, 2008,6:71-78 (in Chinese with English abstract)
[24] Jiang H F, Liao B S, Ren X P, Lei Y, Mace E, Fu T D, Crouch J H . Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacteria wilt through SSR and AFLP analyses. J Genet Genomics, 2007,34:544-554
[25] 黄莉, 任小平, 张晓杰, 陈玉宁, 姜慧芳 . ICRISAT 花生微核心种质农艺性状和黄曲霉抗性关联分析. 作物学报, 2012,38:935-946
Huang L, Ren X P, Zhang X J, Chen Y N, Jiang H F . Association analysis of agronomic traits and resistance to aspergillus flavus in the ICRISAT peanut mini-core collection. Acta Agron Sin, 2012,38:935-946 (in Chinese with English abstract)
[26] Krishna G K, Zhang J, Burow M, Pittman R N, Delikostadinov S G, Lu Y Z, Puppala N . Genetic diversity analysis in peanut (Arachis hypogaea L.) using microsatellite markers. Cell Mol Biol Lett, 2004,9:685-697
[27] He G H, Channapatna P . Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol, 2001,48:347-352
[28] He G H, Meng R H, Gao H, Guo B Z, Gao G Q, Melanie N, Roy N P, Prakash C S . Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica, 2005,142:131-136
[29] 宗绪晓, 关建平, 王述民, 刘庆昌 . 中国豌豆地方品种SSR标记遗传多样性分析. 作物学报, 2008,34:1330-1338
Zong X X, Guan J P, Wang S M, Liu Q C . Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin, 2008,34:1330-1338 (in Chinese with English abstract)
[30] 宗绪晓, Ford R, Robert R R, 关建平, 王述民 . 豌豆属(Pisum) SSR标记遗传多样性结构鉴别与分析. 中国农业科学, 2009,42:36-46
doi: 10.3864/j.issn.0578-1752.2009.01.005
Zong X X, Ford R, Robert R R, Guan J P, Wang S M . Identification and analysis of genetic diversity structure within Pisum genus based on microsatellite markers. Sci Agric Sin, 2009,42:36-46 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.01.005
[31] 刘金, 关建平, 徐东旭, 张晓艳, 顾竟, 宗绪晓 . 小扁豆种质资SSR标记遗传多样性及群体结构分析. 作物学报. 2008,34:1901-1909
Liu J, Guan J P, Xu D X, Zhang X Y, Gu J, Zong X X . Analysis of genetic diversity and population structure in Lentil (Lens culinaris Medik.) germplasm by SSR markers. Acta Agron Sin, 2008,34:1901-1909 (in Chinese with English abstract)
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[10] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[13] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[14] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[15] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!