Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1527-1538.doi: 10.3724/SP.J.1006.2018.01527

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress

Ke-Huan LU1,Xing LIU1,Yi YANG1,Zhi-Hua LIAO2,Neng-Biao WU1,*()   

  1. 1 Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education / School of Life Science, Southwest University, Chongqing 400715, China
    2 School of Life Science, Southwest University, Chongqing 400715, China
  • Received:2018-01-15 Accepted:2018-07-20 Online:2018-10-10 Published:2018-08-01
  • Contact: Neng-Biao WU E-mail:wunb@swu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(30500041);the Science Technology Breakthrough Plan Project of Chongqing(cstc2012gg-yyjs80013)

Abstract:

Ultraviolet B (UV-B) radiation does harm to plant, for which growth and development. Ca 2+is one of the most necessary elements. Exogenous Ca 2+ can enhance plant abilities to resist stress and regulate secondary metabolism. In this research, we used Atropa belladonna L. seedlings to investigate the effects of different concentrations of exogenous Ca 2+ and different treatment days on the physiological characteristics, nitrogen metabolism, secondary metabolites content and relative genes expression levels of three key enzymes in secondary metabolism under the background of UV-B radiation. The UV-B radiation not only caused inhibitory effect on the Atropa belladonna L. photosynthesis, nitrogen metabolism, alkaloid content, but also increased peroxidation of membrane lipid. The Fo, MDA content gradually decreased, but the Fv/Fm, photosynthetic pigment content, antioxidant enzyme activity gradually increased under Ca 2+ treatment, showing that Ca 2+ is propitious to relieve inhibitory effect on photosynthesis and enhance resistance to UV-B stress. Moreover, Ca 2+ reduced the content of nitrate nitrogen significantly, promoted the contents of free amino acids, soluble proteins, atropine alkaloids, and raised the activities of key enzymes in nitrogen metabolism. Using real-time fluorescence quantitative PCR, we found that exogenous Ca 2+ increased the relative gene expression levels of three key enzymes in secondary metabolism in different degrees. This research could provide a theoretical references for plantation in the field.

Key words: UV-B stress, Atropa belladonna L., physiological characteristics, nitrogen metabolism, tropane alkaloids

Table 1

Different treatments of Atropa belladonna L."

处理组
Group
CaCl2 浓度
CaCl2 concentration (mmol L-1)
UV-B辐射强度
UV-B radiation intensity (μW cm-2)
处理时间
Treatment time (d)
T0 0 0 4, 8, 12
T1 0 10 4, 8, 12
T2 2 10 4, 8, 12
T3 4 10 4, 8, 12
T4 6 10 4, 8, 12
T5 8 10 4, 8, 12

Table 2

Primer pairs for quantitative PCR"

基因
Gene
登录号
Accession number
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
退火温度
Annealing temperature (°C)
PGK JX154676 TCGCTCTTGGAGAAGGTTGAC CTTGTCCGCAATCACTACATCAG 59.5
PMT AB018570 CCTACTTACCCTACTGGTGTTATC GCGAAAGATGGCAAAATAAAAGC 56.4
H6H JN542537 TTCCACTTGAGCAGAAAGCAAAGC CCTCATGGTCAACTTCCTCACTTCC 56.4
TR I JX155757 TTCTTTGCTTCCCTGCTGCTTC CAGGCCAACCTTAGTATCACACAG 61.4

Fig. 1

Effects of Ca2+ on Fo (A) and Fv/Fm (B) of Atropa belladonna L. under UV-B stress Bars superscripted by different letters are significantly different among different treatments of Ca2+concentration in the same treating days at the 0.05 level. T1 to T5 indicate different treatments of Ca2+ concentration (0, 2, 4, 6, and 8 mmol L-1) under UV-B stress. T0 indicates untreated blank control groups."

Fig. 2

Effects of Ca2+ on the content of total chlorophyll (A) and carotenoid (B) of Atropa belladonna L. leaves under UV-B stress Bars superscripted by different letters are significantly different among different treatments of Ca2+concentration in the same treating days at the 0.05 probability level. T1 to T5 indicate different treatments of Ca2+ concentration (0, 2, 4, 6, and 8 mmol L-1) under UV-B stress. T0 indicates untreated blank control groups."

Fig. 3

Effects of Ca2+ on the activities of antioxidant enzymes (A, B, C) and the contents of MDA (D) of Atropa belladonna L. under UV-B stress Bars superscripted by different letters are significantly different among different treatments of Ca2+concentration in the same treating days at the 0.05 probability level. T1 to T5 indicate different treatments of Ca2+ concentration (0, 2, 4, 6, and 8 mmol L-1) under UV-B stress. T0 indicates untreated blank control groups."

Table 3

Effects of Ca2+ on nitrate nitrogen, free amino acids, and soluble proteins content of Atropa belladonna L. under UV-B stress"

指标
Indicator
处理组
Group
处理时间 Treatment time
4 d 8 d 12 d
硝态氮
Nitrate nitrogen
(μg g-1 FW)
T0 539.543±19.299 b 545.976±29.480 a 526.677±29.480 a
T1 693.935±38.598 d 874.059±58.959 c 1112.080±40.174 d
T2 610.306±40.174 c 803.296±29.480 c 944.822±57.897 c
T3 462.347±19.299 a 726.100±48.568 b 874.059±62.038 c
T4 507.378±48.568 ab 597.440±38.598 a 783.997±29.480 b
T5 494.512±29.480 ab 681.069±44.569 b 861.193±48.568 bc
游离氨基酸
Free amino acids
(mg g-1 FW)
T0 352.269±32.459 e 329.930±15.145 d 332.723±14.323 d
T1 225.763±38.646 b 177.929±25.124 a 134.465±19.857 a
T2 287.559±33.889 cd 185.213±25.860 a 161.661±18.992 ab
T3 313.176±25.550 de 255.872±30.828 bc 241.789±24.322 c
T4 251.137±33.889 bc 286.224±22.980 cd 264.856±17.015 c
T5 166.153±29.940 a 221.635±35.763 ab 194.076±16.096 b
指标
Indicator
处理组
Group
处理时间 Treatment time
4 d 8 d 12 d
可溶性蛋白
Soluble proteins
(mg g-1 FW)
T0 5.879±0.309 a 5.681±0.364 ab 5.570±0.398 c
T1 6.458±0.401 a 4.953±0.548 a 3.725±0.430 a
T2 7.901±0.653 bc 5.736±0.432 ab 5.264±0.649 bc
T3 9.087±0.399 c 7.415±0.572 c 6.953±0.391 d
T4 6.859±0.491 ab 7.496±0.749 c 4.358±1.058 ab
T5 5.861±1.526 a 6.535±1.007 bc 3.887±0.456 a

Table 4

Effects of Ca2+ on NR, GS, and GDH activities of Atropa belladonna L. under UV-B stress"

指标
Indicator
处理组
Group
处理时间 Treatment time
4 d 8 d 12 d
硝酸还原酶 NR
(U g-1 FW h-1)
T0 1.290±0.048 c 1.282±0.117 c 1.333±0.052 d
T1 1.037±0.022 a 0.813±0.053 a 0.557±0.039 a
T2 1.035±0.061 a 0.939±0.108 a 0.664±0.040 b
T3 1.121±0.009 b 1.083±0.030 b 0.724±0.047 b
T4 1.290±0.018 c 1.213±0.035 bc 0.902±0.043 c
T5 1.135±0.013 b 1.121±0.048 b 0.753±0.080 b
谷氨酰胺合成酶 GS
(OD540 mg-1 FW h-1)
T0 8.349±0.197 c 7.885±0.259 d 7.696±0.670 d
T1 6.555±0.235 a 4.989±0.767 a 3.952±0.323 a
T2 6.812±0.297 a 5.666±0.155 b 4.323±0.214 ab
T3 7.494±0.285 b 6.442±0.138 c 4.883±0.226 bc
T4 8.037±0.231 c 7.336±0.189 d 5.454±0.201 c
T5 6.870±0.268 a 6.104±0.105 bc 4.592±0.219 ab
谷氨酸脱氢酶 GDH
(U mg-1 FW min-1)
T0 5.659±0.402 a 5.756±0.658 b 4.968±0.482 b
T1 6.109±0.589 ab 4.244±0.579 a 3.344±0.486 a
T2 6.367±0.841 ab 5.338±0.486 ab 4.887±0.402 b
T3 7.138±0.880 b 5.916±0.990 b 6.881±0.620 c
T4 6.045±0.780 ab 8.039±0.678 c 6.431±0.403 c
T5 5.016±0.696 a 7.395±0.486 c 5.338±0.589 b

Table 5

Effects of Ca2+ on the contents of hyoscyamine and scopolamine of Atropa belladonna L. leaves under UV-B stress"

指标
Indicator
处理组
Group
处理时间 Treatment time
4 d 8 d 12 d
莨菪碱
Hyoscyamine
(μg g-1 DW)
T0 1058.072±37.583 a 1083.528±31.056 d 1052.901±35.189 d
T1 1100.436±16.571 ab 915.777±20.900 a 717.403±22.549 a
T2 1108.081±25.848 ab 923.651±17.580 ab 731.083±22.291 ab
T3 1160.567±33.114 bc 961.774±16.661 b 769.983±19.220 b
T4 1194.663±54.229 c 1005.077±26.956 c 830.383±16.479 c
T5 1160.712±22.361 bc 936.849±19.690 ab 764.317±27.984 b
东莨菪碱
Scopolamine
(μg g-1 DW)
T0 705.793±9.434 c 712.340±4.758 c 706.746±6.777 e
T1 608.653±18.251 a 436.066±42.860 a 322.495±13.838 a
T2 639.789±29.007 ab 443.938±22.239 a 342.123±13.148 ab
T3 703.185±23.661 c 491.396±19.175 ab 363.689±24.281 bc
T4 691.481±28.849 c 533.542±44.175 b 425.387±36.488 d
T5 665.574±21.782 bc 482.438±38.057 ab 384.401±18.008 c

Fig. 4

Effects of Ca2+ on relative expression level of PMT, H6H, TR I gene in roots (A) and leaves (B) of the Atropa belladonna L. under UV-B stress Bars superscripted by different letters are significantly different among different treatments in the same gene at the 0.05 probability level. T0 group indicates untreated blank control groups; T1 group indicates UV-B radiation treatment for 12 days; T4 group indicates exogenous 6 mmol L-1 Ca2+ treatment for 12 days under UV-B stress."

[1] Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: China Medical Science and Technology Press, 2010. pp 262-264
[2] Liu Y, Zhang J T, Yang J H . Comparative study on the pharmacological effects of some scopolia alkaloid derivatives. Acta Pharm Sin, 1987,22:725-729
pmid: 3450123
[3] Facchini P J . ALKALOID BIOSYNTHESIS IN PLANTS: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol, 2001,52:29-66
doi: 10.1146/annurev.arplant.52.1.29
[4] 徐佳妮, 雷梦琦, 鲁瑞琪, 赵杨阳, 黄萱 . UV-B辐射增强对植物影响的研究进展. 基因组学与应用生物学, 2015,34:1347-1352
Xu J N, Lei M Q, Lu R Q, Zhao Y Y, Huang X . Research progress on the effect of enhanced UV-B radiation on plants. Genomics Appl Biol, 2015,34:1347-1352 (in Chinese with English abstract)
[5] 卢克欢, 苏贝贝, 郭双, 张翠平, 韦悦, 吴能表 . UV-B辐射对颠茄氮代谢及次生代谢产物含量的影响. 中国生物化学与分子生物学报, 2017,33:1062-1069
Lu K H, Su B B, Guo S, Zhang C P, Wei Y, Wu N B . Effects of UV-B on the activities of nitrogen metabolism and secondary metabolites of Atropa belladonna. Chin J Biochem Mol Biol, 2017,33:1062-1069 (in Chinese with English abstract)
[6] Bush D S . Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol, 1995,46:95-112
doi: 10.1146/annurev.pp.46.060195.000523
[7] 余叔文, 汤章城 . 植物生理与分子生物学(第2版). 北京: 科学出版社, 1998. pp 123-133
Yu S W, Tang Z C. Plant Physiology and Molecular Biology, 2nd edn. Beijing: Science Press, 1998. pp 123-133(in Chinese)
[8] Braam J, Davis R W . Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 1990,60:357-364
[9] 梁颖, 王三根 . Ca 2+对低温下水稻幼苗膜的保护作用 . 作物学报, 2001,27:59-64
Liang Y, Wang S G . The protective function of Ca 2+ on the membrane of rice seeding under low temperature stress . Acta Agron Sin, 2001,27:59-64 (in Chinese with English abstract)
[10] 王立安, 王源超, 李昌文, 郑小波 . Ca 2+信号途径参与稻瘟病菌分生孢子萌发及附着胞形成的调控 . 菌物系统, 2003,22:457-465
doi: 10.3969/j.issn.1672-6472.2003.03.023
Wang L A, Wang Y C, Li C W, Zheng X B . Ca 2+ signaling pathway involved in Magnaporthe grisea conidium germination and appressorium formation. Mycosystema, 2003,22:457-465 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-6472.2003.03.023
[11] Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L G, Hung W, D’Angelo C . The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004,16:1912-1924
[12] 高彦博 . 外源Ca 2+对盐胁迫下唐古特白刺光合作用及氮代谢的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2016
Gao Y B . Effects of Exogenous Ca 2+ on Photosynthesis and Nitrogen Metabolism of Nitraria tangutorum Bobr. under Salt Stress. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2016 ( in Chinese with English abstract)
[13] 陈露露, 王秀峰, 刘美, 杨凤娟, 史庆华, 魏珉, 李清明 . 外源钙对干旱胁迫下黄瓜幼苗叶片膜脂过氧化和光合特性的影响. 山东农业科学, 2016,48(4):28-33
Chen L L, Wang X F, Liu M, Yang F J, Shi Q H, Wei M, Li Q M . Effects of exogenous CaCl2 on membrane lipid peroxidation and photo-synthetic characteristics of cucumber seedling leaves under drought stress. Shandong Agric Sci, 2016,48(4):28-33 (in Chinese with English abstract)
[14] 赵娟, 王芳, 李永生, 姚海梅, 张同祯, 方永丰, 王汉宁 . 钙对低温胁迫下玉米种子萌发及幼苗生长的影响. 甘肃农业大学学报, 2016,51(6):30-35
Zhao J, Wang F, Li Y S, Yao H M, Zhang T Z, Fang Y F, Wang H N . Effects of calcium on maize seed germination and seeding growth under low temperature stress. J Gansu Agric Univ, 2016,51(6):30-35 (in Chinese with English abstract)
[15] Nakao M, Ono K, Takio S . The effect of calcium on flavanol production in cell suspension cultures of Polygonum hydropiper. Plant Cell Rep, 1999,18:759-763
doi: 10.1007/s002990050656
[16] Piñol M T, Palazón J, Cusidó R M, Ribó M . Influence of calcium ion-concentration in the medium on tropane alkaloid accumulation in Datura stramonium hairy roots. Plant Sci, 1999,141:41-49
[17] Yue C J, Zhong J J . Impact of external calcium and calcium sensors on ginsenoside Rb1 biosynthesis by Panax notoginseng cells. Biotechnol Bioeng, 2005,89:444-452
[18] Bramble J L, Graves D J, Brodelius P . Calcium and phosphate effects on growth and alkaloid production in Coffea arabica: experimental results and mathematical model. Biotechnol Bioeng, 1991,37:859-868
[19] 杨卫星, 黑刚刚, 李姣姣, 张红敏, 李琳琳, 吴能表 . 外源Ca 2+对高温胁迫下半夏光合参数及有效成分积累的影响 . 中国中药杂志, 2014,39:2614-2618
Yang W X, Hei G G, Li J J, Zhang H M, Li L L, Wu N B . Effects of Ca 2+ on photosynthetic parameters of Pinellia ternata and accumulations of active components in heat stress. China J Chin Mater Med, 2014,39:2614-2618 (in Chinese with English abstract)
[20] 张宪政 . 植物叶绿素含量测定: 丙酮乙醇混合液法. 辽宁农业科学, 1986, ( 3):26-28
Zhang X Z . Determination of chlorophyll content in plants: acetone ethanol mixture method. Liaoning Agric Sci, 1986, ( 3):26-28 (in Chinese without English abstract)
[21] Velikova V, Yordanov I, Edreva A . Oxidative stress and some antioxidant systems in acid rain 2-treated bean plants protective role of exogenous polyamines. Plant Sci, 2000,151:59-66
doi: 10.1016/S0168-9452(99)00197-1
[22] Giannopolitis C N, Ries S K . Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977,59:309-314
doi: 10.1104/pp.59.2.309
[23] Omran R G . Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol, 1980,65:407-408
doi: 10.1104/pp.65.2.407
[24] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 214-215
Gao J F. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2006. pp 214-215(in Chinese)
[25] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 192-194
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 192-194(in Chinese)
[26] 汤绍虎, 罗充 . 植物生理学实验教程. 重庆: 西南师范大学出版社, 2013. pp 57-58
Tang S H, Luo C. Experimental Course of Plant Physiology. Chongqing: Southwestern Normal University Press, 2013. pp 57-58(in Chinese)
[27] Zárate R, Hermosin B, Cantos M, Troncoso A . Tropane alkaloid distribution in Atropa baetica plants. J Chemical Ecol, 1997,23 : 2059-2066
[28] 强玮, 王亚雄, 张巧卓, 李金弟, 夏科, 吴能表, 廖志华 . 颠茄托品烷生物碱合成途径基因表达分析与生物碱积累研究. 中国中药杂志, 2014,39:52-58
Qiang W, Wang Y X, Zhang Q Z, Li J D, Xia K, Wu N B, Liao Z H . Expression pattern of genes involved in tropane alkaloids biosynthesis and tropane alkaloids accumulation in Atropa belladonna. China J Chin Mater Med, 2014,39:52-58 (in Chinese with English abstract)
[29] 强玮 . 颠茄TR I基因的克隆、功能验证及超量表达对颠茄托品烷生物碱合成的影响. 西南大学硕士学位论文, 重庆, 2012
doi: 10.7666/d.y2085435
Qiang W . Cloning and Characterization of Tropinone Reductase I from Atropa belladonna and Its Overexpression for Enhancing the Tropane Alkaloids Production in Atropa belladonna. MS Thesis of Southwest University, Chongqing, China, 2012 ( in Chinese with English abstract)
doi: 10.7666/d.y2085435
[30] 张守仁 . 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999,16:444-448
doi: 10.3969/j.issn.1674-3466.1999.04.021
Zhang S R . A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot, 1999,16:444-448 (in Chinese without English abstract)
doi: 10.3969/j.issn.1674-3466.1999.04.021
[31] 马伏英 . 黄连等中药抗实验性小鼠柯萨奇B3病毒性心肌炎的实验研究. 武警医学, 1998,9(4):187-190
Ma F Y . Experimental study of Coptis chinsis Franch etc. against coxsackievirus B3 myocarditis of rats. Med J Chin People’s Armed Police Forces, 1998,9(4):187-190 (in Chinese with English abstract)
[32] Xu C, Li D, Zou Q, Zhang J . Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages. Acta Phytophysiol Sin, 1999,25:29-37
[33] 尹永强, 胡建斌, 邓明军 . 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展. 中国农学通报, 2007,23(1):105-110
doi: 10.3969/j.issn.1000-6850.2007.01.025
Yin Y Q, Hu J B, Deng M J . Latest development of antiosidant system and responses to stress in plant leaves. Chin Agric Sci Bull, 2007,23(1):105-110 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2007.01.025
[34] 郝敬虹, 易旸, 尚庆茂, 董春娟, 张志刚 . 水杨酸处理对干旱胁迫下黄瓜幼苗氮素同化及其关键酶活性的影响. 园艺学报, 2012,39:81-90
Hao J H, Yi Y, Shang Q M, Dong C J, Zhang Z G . Effect of exogenous salicylic acid on nitrogen assimilation of cucumber seedling under drought stress. Acta Hortic Sin, 2012,39:81-90 (in Chinese with English abstract)
[35] 宋子健, 李良霞, 李建龙, 张强 . 高温胁迫对高羊茅草坪草氮代谢的影响. 贵州农业科学, 2007,35(6):15-19
Song Z J, Li L X, Li J L, Zhang Q . The effect of high temperature stress on nitrogen metabolism of tall fescue turfgrass. Guizhou Agric Sci, 2007,35(6):15-19 (in Chinese with English abstract)
[36] Zhang L, Ding R X, Chai Y R, Bonfill M, Moyano E, Oksman-Caldentey K M, Xu T F, Pi Y, Wang Z N, Zhang H M, Kai G Y, Liao Z H, Sun X F, Tang K X . Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA, 2004,101:6786-6791
[37] 张春平, 周慧, 何平, 胡世俊, 段静雨, 李岩, 么焕开 . 外源5-氨基乙酰丙酸对盐胁迫下黄连幼苗光合参数及其叶绿素荧光特性的影响. 西北植物学报, 2014,34:2515-2524
doi: 10.7606/j.issn.1000-4025.2014.12.2515
Zhang C P, Zhou H, He P, Hu S J, Duan J Y, Li Y, Yao H K . Effect of exogenous 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence characteristics of Coptis chinensis Franch. seedlings under NaCl stress. Acta Bot Boreali- Occident Sin, 2014,34:2515-2524 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2014.12.2515
[38] Lu C M, Zhang J H . Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot, 1999,50:1199-1206
doi: 10.1093/jxb/50.336.1199
[39] 秦舒浩, 李玲玲, 陈娜娜 . 外源Ca 2+对高温强光下西葫芦幼苗形态特征、光合特性及荧光参数的影响 . 应用生态学报, 2010,21:2830-2835
Qin S H, Li L L, Chen N N , Effects of exogenous Ca 2+ on morphological and photosynthetic characteristics and chlorophyll fluorescent parameters of squash seedlings under high temperature and strong light stress . Chin J Appl Ecol, 2010,21:2830-2835 (in Chinese with English abstract)
[40] 白志英, 李存东, 孙红春, 吴同燕 . 干旱胁迫对小麦叶片叶绿素和类胡萝卜素含量的影响及染色体调控. 华北农学报, 2009,24(1):1-6
doi: 10.7668/hbnxb.2009.01.002
Bai Z Y, Li C D, Sun H C, Wu T Y . The effect and chromosomal control on chlorophyll content and corticoid content under drought stress in wheat (Triticum aestivum L.). Acta Agric Boreali-Sin, 2009,24(1):1-6 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2009.01.002
[41] 罗广华, 王爱国, 邵从本, 郭俊彦 . 超氧物歧化酶(SOD)在大豆下胚轴线粒体内的定位. 植物学报, 1987,29:171-177
Luo G H, Wang A G, Shao C B, Guo J Y . The intramitochondrial localization of superoside dismutase from hypocotyl of etiolated soybean seedlings. Acta Bot Sin, 1987,29:171-177 (in Chinese with English abstract)
[42] 韩蕊莲, 李丽霞, 梁宗锁, 薛智德, 杜正科 . 干旱胁迫下沙棘膜脂过氧化保护体系研究. 西北林学院学报, 2002,17(4):1-5
Han R L, Li L X, Liang Z S, Xue Z D, Du Z K . Seabuck thorn membrane-lipid peroxidation system under drought stress. J Northwest For Univ, 2002,17(4):1-5 (in Chinese with English abstract)
[43] 邢建永, 王康才, 汤兴利, 刘海琴 . Ca 2+对悬浮培养半夏类原球茎生长及次生代谢物累积的影响 . 中草药, 2011,42:376-379
Xing J Y, Wang K C, Tang X L, Liu H Q . Effect of Ca 2+ on growth in protocorm-like bodies of Pinellia ternata and accumulation of secondary metabolites during suspension culture. Chin Traditional Herbal Drugs, 2011,42:376-379 (in Chinese with English abstract)
[44] 温泉, 张楠, 曹瑞霞, 周心渝, 唐娟, 吴能表 . 增强UV-B对黄连代谢及小檗碱含量的影响. 中国中药杂志, 2011,36:3063-3069
doi: 10.4268/cjcmm20112201
Wen Q, Zhang N, Cao R X, Zhou X Y, Tang J, Wu N B . Effect of enhanced UV-B radiation on metabolism and berberine content of Coptis chinensis. China J Chin Mater Med, 2011,36:3063-3069 (in Chinese with English abstract)
doi: 10.4268/cjcmm20112201
[1] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[2] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[3] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[4] LYU Teng-Fei, SHEN Jie, DAI Zou, MA Peng, YANG Zhi-Yuan, ZHENG Chuan-Gang, MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1966-1977.
[5] WANG Shi-Ya, ZHENG Dian-Feng, FENG Nai-Jie, LIANG Xi-Long, XIANG Hong-Tao, FENG Sheng-Jie, JIN Dan, LIU Mei-Ling, MU Bao-Min. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000.
[6] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[7] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[8] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
[9] Yu-Si SHAN, Zheng-Qi XIN, Xiao HE, Huan-Huan DAI, Neng-Biao WU. Mechanism exploration on alkaloids accumulation and TAs metabolic pathways regulation in Atropa belladonna L. treated with exogenous methyl jasmonate under UV-B stress [J]. Acta Agronomica Sinica, 2020, 46(12): 1894-1904.
[10] Hai-Ming TANG,Xiao-Ping XIAO,Chao LI,Wen-Guang TANG,Li-Jun GUO,Ke WANG,Kai-Kai CHENG,Xiao-Chen PAN,Gen SUN. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice [J]. Acta Agronomica Sinica, 2019, 45(5): 740-754.
[11] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[12] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[13] Guang-Long ZHU,Cheng-Yu SONG,Lin-Lin YU,Xu-Bing CHEN,Wen-Fang ZHI,Jia-Wei LIU,Xiu-Rong JIAO,Gui-Sheng ZHOU. Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis [J]. Acta Agronomica Sinica, 2018, 44(11): 1713-1724.
[14] Cheng-Xin JU, Zhu-Biao ZHOU, Bu-Hong ZHAO, Zhi-Qin WANG, Jian-Chang YANG. Comparison in Nitrogen Metabolism and Photosynthetic Characteristics between Japonica Rice Varieties Differing in Nitrogen Sensitivity [J]. Acta Agronomica Sinica, 2018, 44(03): 405-413.
[15] LI Yuan, LI Ya-Bing, HU Da-Peng, WANG Jun, HENG Li, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of Waterlogging on Bt Protein Content and Nitrogen Metabolism in Square of Bt Cotton [J]. Acta Agron Sin, 2017, 43(11): 1658-1666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!