Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1000-1009.doi: 10.3724/SP.J.1006.2018.01000
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Rui-Juan YANG1,2,Jian-Rong BAI2,*(),Lei YAN2,Liang SU2,Xiu-Hong WANG3,Rui LI2,Cong-Zhuo ZHANG2
[1] |
Jennings D H . Mineral nutrition in higher plants (book). Plant Cell Environ, 1988,11:147
doi: 10.1111/1365-3040.ep11604921 |
[2] |
Raghothama K G . Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:665-693
doi: 10.1146/annurev.arplant.50.1.665 |
[3] |
Smith F W, Mudge S R, Rae A L, Glassop D . Phosphate transport in plants. Plant Soil, 2003,248:71-83
doi: 10.1023/A:1022376332180 |
[4] | 刘建中, 李振声, 李继云 . 利用植物自身潜力提高土壤中磷的生物有效性. 中国生态农业学报, 1994,2(1):16-23 |
Liu J Z, Li Z S, Li J Y . Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Chin J Eco-Agric, 1994,2(1):16-23 (in Chinese with English abstract) | |
[5] |
Raghothama K G . Phosphate transport and signaling. Curr Opin Plant Biol, 2000,3:182-187
doi: 10.1016/S1369-5266(00)00062-5 |
[6] |
Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J . A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001,15:2122-2133
doi: 10.1101/gad.204401 |
[7] | Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P . OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008,146:1673-1786 |
[8] | Wu P, Wang X M . Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice(Oryza sativa L.). Plant Signal Behav, 2008,3:674-675 |
[9] |
张景涛, 马信, 李国瑜, 袁园园, 王庆专, 杜斌, 王洪刚 . 小麦TaPHR1基因表达载体的构建. 分子植物育种, 2010,8:161-166
doi: 10.3969/mpb.008.000161 |
Zhang J T, Ma X, LI G Y, Yuan Y Y, Wang Q Z, Du B, Wang H G . Construction on expression vector of TaPHR1 gene in wheat. Mol Plant Breed, 2010,8:161-166 (in Chinese with English abstract)
doi: 10.3969/mpb.008.000161 |
|
[10] |
Ren F, Guo Q Q, Chang L L, Chen L, Zhao C Z, Zhong H, Li X B . Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One, 2012,7:e44005
doi: 10.1371/journal.pone.0044005 pmid: 22952851 |
[11] |
Wang X H, Bai J R, Liu H M, Sun Y, Shi X Y, Ren Z Q . Overexpression of a maize transcription factor ZmPHR1, improves shoot inorganic phosphate content and growth of Arabidopsis, under low-phosphate conditions. Plant Mol Biol Rep, 2013,31:665-677
doi: 10.1007/s11105-012-0534-3 |
[12] |
Nilsson L, Muller R, Nielsen T H . Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ, 2007,30:1499-1512
doi: 10.1111/j.1365-3040.2007.01734.x pmid: 17927693 |
[13] |
Liu F, Wang Z Y, Ren H Y, Shen C J, Li Y, Ling H Q, Wu C Y, Lian X M, Wu P . OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010,62:508-517
doi: 10.1111/j.1365-313X.2010.04170.x pmid: 20149131 |
[14] |
Ruan W Y, Guo M N, Cai L L, Hu H T, Li C Y, Liu Y, Wu Z C, Mao C Z, Yi K K, Wu P, Mo X R . Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L. Plant Mol Biol, 2015,87:429-440
doi: 10.1007/s11103-015-0289-y pmid: 25657119 |
[15] |
Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K N, Udayakumar M, Pereira A . Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA, 2007,104:15270-15275
doi: 10.1073/pnas.0707294104 pmid: 17881564 |
[16] |
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K . Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech, 1999,17:287-291
doi: 10.1038/7036 pmid: 10096298 |
[17] |
Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua N H . Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol, 1990,15:905-912
doi: 10.1007/BF00039429 pmid: 2151733 |
[18] |
Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[19] | Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743 |
[20] |
Jefferson R A, Kavanagh T A, Bevan M W . GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901-3907
doi: 10.1089/dna.1987.6.583 pmid: 3327686 |
[21] |
Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
doi: 10.1016/0003-2697(76)90527-3 |
[22] |
Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D . Isolation of the endosperm-specific LPAAT gene promoter from coconut(Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep, 2010,29:1061-1068
doi: 10.1007/s00299-010-0892-y pmid: 20589378 |
[23] |
Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451
doi: 10.1006/meth.2001.1266 pmid: 11846613 |
[24] | 孔佑宾, 李喜焕, 张彩英 . 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析. 中国农业科学, 2017,50:582-590 |
Kong Y B, Li X H, Zhang C Y . Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean. Chin Agric Sci, 2017,50:582-590 (in Chinese with English abstract) | |
[25] |
Rai M, He C K, Wu R . Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res, 2009,18:787-799
doi: 10.1007/s11248-009-9263-2 |
[26] | 邹郁陶, 刘鑫, 牟巍, 高学焕, 付凤玲, 李晚忱 . 玉米胚胎发生后期丰富蛋白基因的启动子克隆与功能验证. 西北植物学报, 2015,35:653-661 |
Zou Y T, Liu X, Mu W, Gao X H, Fu F L, Li W C . Cloning and functional validation of late embryogenesis abundant protein promoter from maize. Acta Bot Boreali-Occident Sin, 2015,35:653-661 (in Chinese with English abstract) | |
[27] | 陈佳佳, 牟巍, 周树峰, 李晚忱, 付凤玲 . 玉米HVA22基因启动子的克隆与功能验证. 核农学报, 2014,28:560-568 |
Chen J J, Mu W, Zhou S F, Li W C, Fu F L . Cloning and functional validation of HVA22 gene promoter in maize. J Nucl Agric Sci, 2014,28:560-568 (in Chinese with English abstract) | |
[28] | 高学焕, 付凤玲, 牟巍, 周树峰, 张素芝, 李晚忱 . 玉米钼辅助因子硫酸化酶基因启动子的克隆与功能验证. 遗传, 2014,36:584-591 |
Gao X H, Fu F L, Mu W, Zhou S F, Zhang S Z, Li W C . Cloning and functional validation of promoter of mo-molybdopterin cofactor sulfurase gene in maize. Hereditas ( Beijing), 2014,36:584-591 (in Chinese with English abstract) | |
[29] | 张利娜, 刘瑜, 林拥军 . 水稻CDPK12基因启动子的表达模式及其逆境应答元件分析. 农业生物技术学报, 2015,23:1261-1272 |
Zhang L N, Liu Y, Lin Y J . Expression pattern and stress response elements analysis of CDPK12 gene promoter in rice(Oryza sativa ssp. japonica). J Agric Biol, 2015,23:1261-1272 (in Chinese with English abstract) | |
[30] |
关涛, 怀宝玉, 郑佩晶, 李丹, 康振生, 刘杰 . 干旱胁迫下小麦葡萄糖-6-磷酸脱氢酶基因TaG6PDH1的表达特征及启动子分析. 麦类作物学报, 2015,35:1194-1201
doi: 10.7606/j.issn.1009-1041.2015.09.03 |
Guan T, Huai B Y, Zheng P J, Li D, Kang Z S, Liu J . Promoter analysis and characterization of a glucose-6-phosphate dehydrogenase gene TaG6PDH1 of wheat during drought stress. J Trit Crops, 2015,35:1194-1201 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2015.09.03 |
|
[31] |
扆珩, 李昂, 刘惠民, 景蕊莲 . 小麦蛋白磷酸酶2A基因TaPP2AbB″-α启动子的克隆及表达分析. 作物学报, 2016,42:1282-1290
doi: 10.3724/SP.J.1006.2016.01282 |
Yi H, Li A, Liu H M, Jing R L . Cloning and expression analysis of protein phosphatase 2A gene TaPP2AbB″-α promoter in wheat. Acta Agron Sin, 2016,42:1282-1290 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01282 |
|
[32] | 裴柳玲, 唐清, 张涛, 赵云龙, 林书岱, 孙杰, 刘永昌 . 水稻胁迫相关基因 OsPM1启动子的克隆与分析. 西北植物学报, 2015,35:2179-2184 |
Pei L L, Tang Q, Zhang T, Zhao Y L, Lin S D, Sun J, Liu Y C . Cloning and analysis of promoter of stress-related gene OsPM1 from Oryza sativa. Acta Bot Boreali-Occident Sin, 2015,35:2179-2184 (in Chinese with English abstract) | |
[33] |
Yang G Z, Du H Y, Xu H, Ding G D, Xu F S . Identification of phosphate-starvation-inducible gene BnIPS1, in Brassica napus. Acta Physiol Plant, 2013,35:2085-2094 (in Chinese with English abstract)
doi: 10.1007/s11738-013-1243-8 |
[34] |
马骏骏, 柳展基, 李菲, 王立国, 傅明川, 朱新霞, 刘任重 . 棉花转录因子GhSNAC3启动子的克隆与表达分析. 华北农学报, 2016,31(5):35-43
doi: 10.7668/hbnxb.2016.05.006 |
Ma J J, Liu Z J, Li F, Wang L G, Fu M C, Zhu X X, Liu R Z . The cloning and expression analysis of transcription factor GhSNAC3 promoter in cotton. Acta Agric Boreali Sin, 2016,31(5):35-43 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2016.05.006 |
|
[35] |
Zhu W, Zhang D, Lu X, Zhang L, Yu Z, Lu H, Zhang H M . Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Mol Biol Rep, 2014,32:664-678
doi: 10.1007/s11105-013-0681-1 |
[36] | 杜皓, 丁林云, 何曼林, 蔡彩平, 郭旺珍 . 受多逆境诱导表达的GhWRKY64基因启动子克隆与功能分析. 作物学报, 2015,41:593-600 |
Du H, Ding L Y, He M L, Cai C P, Guo W Z . Cloning and functional identification of promoter region of GhWRKY64 induced by multi-stresses in cotton(Gossypium hirsutum). Acta Agron Sin, 2015,41:593-600 (in Chinese with English abstract) |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[8] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[9] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[10] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[11] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[12] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[13] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
[14] | ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26. |
[15] | NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562. |
|