Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1000-1009.doi: 10.3724/SP.J.1006.2018.01000

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize

Rui-Juan YANG1,2,Jian-Rong BAI2,*(),Lei YAN2,Liang SU2,Xiu-Hong WANG3,Rui LI2,Cong-Zhuo ZHANG2   

  1. 1 College of Biology Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
    2 Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
    3 Research Center of Modern Agriculture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2018-01-02 Accepted:2018-03-26 Online:2018-07-10 Published:2018-04-10
  • Contact: Jian-Rong BAI E-mail:zwsjrbai@126.com
  • Supported by:
    This study was supported by the Agricultural Science and Technology Innovation Program of Shanxi Academy of Agricultural Sciences (ZDSY1507).

Abstract:

ZmPHR1, a member of transcription factor MYB-CC family, enhanced phosphate absorption and improved plant growth when it was overexpressed under low-phosphate conditions. In order to elucidate the transcriptional regulatory mechanism of the promoter of ZmPHR1, its 5′ upstream sequence P2205-ZmPHR1 was cloned from P-efficient maize inbred line 478. The full length of P2205-ZmPHR1 and four sequence deletion fragments in different lengths fused with the reporter gene GUS were transformed into Arabidopsis, respectively. The results of histochemical and quantitative fluorometric GUS assay showed that in the interval from 0 to -1502 bp, the response time and activity of sequence deletion fragments were increased with increasing fragment length. However, the activities were decreased or unchanged when the length of fragments were longer than 1502 bp. It was considered that the interval from 0 to -972 bp was function region and that from -972 bp to -1502 bp was function enhancing region. The results of qPCR analysis in transgenic plants at different time points (0, 1, 2, 3, and 4 days) after P-stress treatment showed that the activities of P1502-ZmPHR1 were influenced by both external signals and internal gene products, having feedback regulation. This study indicates that P1502-ZmPHR1 is a strong inducible promoter responding to low phosphorus stress and its functional activity is regulated by both external and internal phosphate concentration. These fundings provide an ideal promoter for crop improvement under low phosphate conditions and a basis for its application.

Key words: maize, low phosphorus stress, strong inducible promoter, P1502-ZmPHR1

Table 1

Primers of PCR"

引物名称
Primer name
序列
Sequence (5'-3')
SF1 GTCGACTTGTGATCGCAGTACGAAAA
SF2 GTCGACCATCACACCTGTACTTGGC
SF3 GTCGACTGCTGGGCTTTTGATTCC
SF4 GTCGACCAGGTGGACCCACGTATC
SF5 GTCGACCCTGTCGTGTTGGACTTG
SR AGATCTacCATTCAGAGCAGTGAACAAGCTC
qGUS-F CCGTCCCAAGCAGTTACAAT
qGUS-R CGATACGCTGATCCTTCAGATAG
AtACT2-qRT-F GGAATCGTTCACAGAAAATG
AtACT2-qRT-R CAAACAAATGGAGAAGCAAA

Supplementary Fig. 1

5' upstream sequence alignments of maize 478 and B73 ZmPHR1 gene"

Fig. 1

Amplified fragment of P2205-ZmPHR1"

Fig. 2

Nucleotide sequence and putative cis-acting elements of P2205-ZmPHR1"

Fig. 3

Schematic show of cis-acting elements in 5° terminal deletion fragments of P2205-ZmPHR1"

Fig. 4

Amplified fragment in 5° terminal deletion fragments of P2205-ZmPHR1 M: marker; 1: P1763-ZmPHR1::GUS; 2: P1502-ZmPHR1::GUS; 3: P972-ZmPHR1::GUS; 4: P482-ZmPHR1::GUS."

Fig. 5

PCR analysis of T1 transgenic Arabidopsis plants M: marker; 1-4: TP2205-ZmPHR1; 5-8: TP1763-ZmPHR1; 9-12: TP1502-ZmPHR1; 13-16: TP972-ZmPHR1; 17-20: TP482-ZmPHR1."

Fig. 6

GUS activity in transgenic Arabidopsis under low phosphorus stress"

Fig. 7

Quantification of GUS activity in transgenic Arabidopsis under low phosphorus stress * and ** indicate significant difference between stress treatment and the control (0 h) at the 0.05 and 0.01 probability levels, respectively (t-test)."

Fig. 8

Relative expression of GUS in TP1502-ZmPHR1 transgenic Arabidopsis under low phosphorus stress"

[1] Jennings D H . Mineral nutrition in higher plants (book). Plant Cell Environ, 1988,11:147
doi: 10.1111/1365-3040.ep11604921
[2] Raghothama K G . Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:665-693
doi: 10.1146/annurev.arplant.50.1.665
[3] Smith F W, Mudge S R, Rae A L, Glassop D . Phosphate transport in plants. Plant Soil, 2003,248:71-83
doi: 10.1023/A:1022376332180
[4] 刘建中, 李振声, 李继云 . 利用植物自身潜力提高土壤中磷的生物有效性. 中国生态农业学报, 1994,2(1):16-23
Liu J Z, Li Z S, Li J Y . Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Chin J Eco-Agric, 1994,2(1):16-23 (in Chinese with English abstract)
[5] Raghothama K G . Phosphate transport and signaling. Curr Opin Plant Biol, 2000,3:182-187
doi: 10.1016/S1369-5266(00)00062-5
[6] Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J . A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001,15:2122-2133
doi: 10.1101/gad.204401
[7] Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P . OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008,146:1673-1786
[8] Wu P, Wang X M . Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice(Oryza sativa L.). Plant Signal Behav, 2008,3:674-675
[9] 张景涛, 马信, 李国瑜, 袁园园, 王庆专, 杜斌, 王洪刚 . 小麦TaPHR1基因表达载体的构建. 分子植物育种, 2010,8:161-166
doi: 10.3969/mpb.008.000161
Zhang J T, Ma X, LI G Y, Yuan Y Y, Wang Q Z, Du B, Wang H G . Construction on expression vector of TaPHR1 gene in wheat. Mol Plant Breed, 2010,8:161-166 (in Chinese with English abstract)
doi: 10.3969/mpb.008.000161
[10] Ren F, Guo Q Q, Chang L L, Chen L, Zhao C Z, Zhong H, Li X B . Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One, 2012,7:e44005
doi: 10.1371/journal.pone.0044005 pmid: 22952851
[11] Wang X H, Bai J R, Liu H M, Sun Y, Shi X Y, Ren Z Q . Overexpression of a maize transcription factor ZmPHR1, improves shoot inorganic phosphate content and growth of Arabidopsis, under low-phosphate conditions. Plant Mol Biol Rep, 2013,31:665-677
doi: 10.1007/s11105-012-0534-3
[12] Nilsson L, Muller R, Nielsen T H . Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ, 2007,30:1499-1512
doi: 10.1111/j.1365-3040.2007.01734.x pmid: 17927693
[13] Liu F, Wang Z Y, Ren H Y, Shen C J, Li Y, Ling H Q, Wu C Y, Lian X M, Wu P . OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010,62:508-517
doi: 10.1111/j.1365-313X.2010.04170.x pmid: 20149131
[14] Ruan W Y, Guo M N, Cai L L, Hu H T, Li C Y, Liu Y, Wu Z C, Mao C Z, Yi K K, Wu P, Mo X R . Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L. Plant Mol Biol, 2015,87:429-440
doi: 10.1007/s11103-015-0289-y pmid: 25657119
[15] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K N, Udayakumar M, Pereira A . Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA, 2007,104:15270-15275
doi: 10.1073/pnas.0707294104 pmid: 17881564
[16] Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K . Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech, 1999,17:287-291
doi: 10.1038/7036 pmid: 10096298
[17] Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua N H . Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol, 1990,15:905-912
doi: 10.1007/BF00039429 pmid: 2151733
[18] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[19] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743
[20] Jefferson R A, Kavanagh T A, Bevan M W . GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901-3907
doi: 10.1089/dna.1987.6.583 pmid: 3327686
[21] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
doi: 10.1016/0003-2697(76)90527-3
[22] Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D . Isolation of the endosperm-specific LPAAT gene promoter from coconut(Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep, 2010,29:1061-1068
doi: 10.1007/s00299-010-0892-y pmid: 20589378
[23] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451
doi: 10.1006/meth.2001.1266 pmid: 11846613
[24] 孔佑宾, 李喜焕, 张彩英 . 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析. 中国农业科学, 2017,50:582-590
Kong Y B, Li X H, Zhang C Y . Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean. Chin Agric Sci, 2017,50:582-590 (in Chinese with English abstract)
[25] Rai M, He C K, Wu R . Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res, 2009,18:787-799
doi: 10.1007/s11248-009-9263-2
[26] 邹郁陶, 刘鑫, 牟巍, 高学焕, 付凤玲, 李晚忱 . 玉米胚胎发生后期丰富蛋白基因的启动子克隆与功能验证. 西北植物学报, 2015,35:653-661
Zou Y T, Liu X, Mu W, Gao X H, Fu F L, Li W C . Cloning and functional validation of late embryogenesis abundant protein promoter from maize. Acta Bot Boreali-Occident Sin, 2015,35:653-661 (in Chinese with English abstract)
[27] 陈佳佳, 牟巍, 周树峰, 李晚忱, 付凤玲 . 玉米HVA22基因启动子的克隆与功能验证. 核农学报, 2014,28:560-568
Chen J J, Mu W, Zhou S F, Li W C, Fu F L . Cloning and functional validation of HVA22 gene promoter in maize. J Nucl Agric Sci, 2014,28:560-568 (in Chinese with English abstract)
[28] 高学焕, 付凤玲, 牟巍, 周树峰, 张素芝, 李晚忱 . 玉米钼辅助因子硫酸化酶基因启动子的克隆与功能验证. 遗传, 2014,36:584-591
Gao X H, Fu F L, Mu W, Zhou S F, Zhang S Z, Li W C . Cloning and functional validation of promoter of mo-molybdopterin cofactor sulfurase gene in maize. Hereditas ( Beijing), 2014,36:584-591 (in Chinese with English abstract)
[29] 张利娜, 刘瑜, 林拥军 . 水稻CDPK12基因启动子的表达模式及其逆境应答元件分析. 农业生物技术学报, 2015,23:1261-1272
Zhang L N, Liu Y, Lin Y J . Expression pattern and stress response elements analysis of CDPK12 gene promoter in rice(Oryza sativa ssp. japonica). J Agric Biol, 2015,23:1261-1272 (in Chinese with English abstract)
[30] 关涛, 怀宝玉, 郑佩晶, 李丹, 康振生, 刘杰 . 干旱胁迫下小麦葡萄糖-6-磷酸脱氢酶基因TaG6PDH1的表达特征及启动子分析. 麦类作物学报, 2015,35:1194-1201
doi: 10.7606/j.issn.1009-1041.2015.09.03
Guan T, Huai B Y, Zheng P J, Li D, Kang Z S, Liu J . Promoter analysis and characterization of a glucose-6-phosphate dehydrogenase gene TaG6PDH1 of wheat during drought stress. J Trit Crops, 2015,35:1194-1201 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2015.09.03
[31] 扆珩, 李昂, 刘惠民, 景蕊莲 . 小麦蛋白磷酸酶2A基因TaPP2AbB″-α启动子的克隆及表达分析. 作物学报, 2016,42:1282-1290
doi: 10.3724/SP.J.1006.2016.01282
Yi H, Li A, Liu H M, Jing R L . Cloning and expression analysis of protein phosphatase 2A gene TaPP2AbB″-α promoter in wheat. Acta Agron Sin, 2016,42:1282-1290 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01282
[32] 裴柳玲, 唐清, 张涛, 赵云龙, 林书岱, 孙杰, 刘永昌 . 水稻胁迫相关基因 OsPM1启动子的克隆与分析. 西北植物学报, 2015,35:2179-2184
Pei L L, Tang Q, Zhang T, Zhao Y L, Lin S D, Sun J, Liu Y C . Cloning and analysis of promoter of stress-related gene OsPM1 from Oryza sativa. Acta Bot Boreali-Occident Sin, 2015,35:2179-2184 (in Chinese with English abstract)
[33] Yang G Z, Du H Y, Xu H, Ding G D, Xu F S . Identification of phosphate-starvation-inducible gene BnIPS1, in Brassica napus. Acta Physiol Plant, 2013,35:2085-2094 (in Chinese with English abstract)
doi: 10.1007/s11738-013-1243-8
[34] 马骏骏, 柳展基, 李菲, 王立国, 傅明川, 朱新霞, 刘任重 . 棉花转录因子GhSNAC3启动子的克隆与表达分析. 华北农学报, 2016,31(5):35-43
doi: 10.7668/hbnxb.2016.05.006
Ma J J, Liu Z J, Li F, Wang L G, Fu M C, Zhu X X, Liu R Z . The cloning and expression analysis of transcription factor GhSNAC3 promoter in cotton. Acta Agric Boreali Sin, 2016,31(5):35-43 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2016.05.006
[35] Zhu W, Zhang D, Lu X, Zhang L, Yu Z, Lu H, Zhang H M . Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Mol Biol Rep, 2014,32:664-678
doi: 10.1007/s11105-013-0681-1
[36] 杜皓, 丁林云, 何曼林, 蔡彩平, 郭旺珍 . 受多逆境诱导表达的GhWRKY64基因启动子克隆与功能分析. 作物学报, 2015,41:593-600
Du H, Ding L Y, He M L, Cai C P, Guo W Z . Cloning and functional identification of promoter region of GhWRKY64 induced by multi-stresses in cotton(Gossypium hirsutum). Acta Agron Sin, 2015,41:593-600 (in Chinese with English abstract)
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!