Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1086-1094.doi: 10.3724/SP.J.1006.2018.01086

• RESEARCH NOTES • Previous Articles     Next Articles

Relationship between Potato Canopy-air Temperature Difference and Drought Tolerance

Bin YU1,Hong-Yu YANG1,Li WANG2,Yu-Hui LIU1,Jiang-Ping BAI1,Feng ZHANG1,Di WANG1,Jun-Lian ZHANG1,*()   

  1. 1 College of Agronomy, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China;
    2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2018-01-10 Accepted:2018-03-26 Online:2018-07-10 Published:2018-04-28
  • Contact: Jun-Lian ZHANG E-mail:zhangjunlian77@163.com
  • Supported by:
    This study was supported by the International Science & Technology Cooperation Program of China (2014DFG31570), the China Agriculture Research System (CARS-09-P14), the Research Program Sponsored by Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University (GSCS-2016-09), and Gansu Scientific Research Foundation for the Higher Education Institutions (2015A-068, GSKYYWF2014-1).

Abstract:

The canopy-air temperature difference can reflect the physiological adaptability of plants under drought stress. In this study, drought tolerant varieties Jizhangshu 8 and Longshu 10, drought sensitive varieties Atlantic and Shepody, and ten potato clones with different drought tolerance levels from Peru International Potato Center were used to measure plant phenotypic traits (plant height, leaf area, leaf fresh weight, normalized difference vegetation index), photosynthetic indexes (photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll content) and the canopy-air temperature difference, and evaluated the drought tolerance under semi-arid and semi-humid environments. The canopy-air temperature difference, transpiration rate and stomatal conductance were most sensitive to drought stress. The canopy-air temperature difference was significantly different among different potato varieties (clones) under semi-arid and semi-humid environments. The drought tolerance coefficient of canopy-air temperature difference showed significantly positive correlations with drought tolerance coefficients of plant phenotypic characters and photosynthetic indexes. The canopy-air temperature difference is an effective indicator to evaluate potato drought tolerance by using infrared thermometers, which could provide a theoretical basis for the research of potato drought tolerance breeding.

Key words: potato, canopy-air temperature difference, photosynthetic physiology characteristics, drought tolerance coefficient

Table 1

Experimental varieties and code of potato germplasm resources from CIP"

类型 Type 品种和CIP编号 Varieties and CIP entry
干旱敏感型
Drought sensitive
大西洋(Atlantic), 夏波蒂(Shepody), CIP1 (CIP 300054.29), CIP2 (CIP 391065.69), CIP3 (CIP 394613.139), CIP4 (CIP 393085.5), CIP5 (CIP 393073.179)
耐旱型
Drought tolerant
冀张薯8号(Jizhangshu 8), 陇薯10号(Longshu 10), CIP6 (CIP 397044.25), CIP7 (CIP 388615.22), CIP8 (CIP 392797.22), CIP9 (CIP 397067.2), CIP10 (CIP 391207.2)

Fig. 1

Dynamic of monthly mean rainfall and temperature in experiment areas"

"

Fig. 2

Thermal images taken by infrared imaging systemsThe figures a and b represent the thermal imaging of drought tolerant variety Longshu 10 under semi-humid region and semi-arid region, the figures c and d represent the thermal imaging of drought sensitive variety Shepody under semi-humid region and semi-arid region. The different color points in the palette represent different temperature values."

"

"

Table 5

Correlation coefficients among drought tolerant indexes of traits related to drought tolerance"

性状
Trait
样本数
Number
株高
Plant height
叶面积
Leaf area
叶鲜重
Leaf fresh weight
叶绿素
Chlorophyll content
植被覆
盖指数
NDVI
光合
速率
Pn
气孔
导度
Gs
蒸腾
速率
Tr
叶面积 Leaf area 84 0.399**
叶鲜重 Leaf fresh weight 84 0.371** 0.688**
叶绿素 Chlorophyll content 84 0.579** 0.263* 0.412**
植被覆盖指数 NDVI 84 0.455** 0.429** 0.553* 0.487**
光合速率 Pn 84 0.190 0.311** 0.274* -0.006 0.339**
气孔导度 Gs 84 0.143 0.338** 0.191 0.235* 0.317** -0.084
蒸腾速率 Tr 84 0.073 0.283** 0.270* 0.117 0.476** 0.174 0.657**
冠气温差Canopy-air temperature difference 84 0.324** 0.522** 0.614** 0.281** 0.427** 0.411** 0.263* 0.345**
[1] Mullins E, Milbourne D, Petti C, Doyle-Prestwich B M, Meade C . Potato in the age of biotechnology. Trends Plant Sci, 2006,11:254-260
doi: 10.1016/j.tplants.2006.03.002 pmid: 16621672
[2] 徐建飞, 金黎平 . 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017,50:990-1015
Xu J F, Jin L P . Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017,50:990-1015 (in Chinese with English abstract)
[3] 肖国举, 仇正跻, 张峰举, 马飞, 姚玉璧, 张强, 王润元 . 增温对西北半干旱区马铃薯产量和品质的影响. 生态学报, 2015,35:830-836
doi: 10.5846/stxb201304110671
Xiao G J, Qiu Z J, Zhang F J, Ma F, Yao Y B, Zhang Q, Wang R Y . Influence of increased temperature on the potato yield and quality in a semiarid district of Northwest China. Acta Ecol Sin, 2015,35:830-836 (in Chinese with English abstract)
doi: 10.5846/stxb201304110671
[4] Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, Ma Y C, Ding Y H, Pierre F, Liu C Z, Tan K, Yu Y Q, Zhang T Y . The impacts of climate change on water resources and agriculture in China. Nature, 2010,467:42-51
doi: 10.1038/nature09364 pmid: 20811450
[5] Lourtie E, Bonnet M, Bosschaert L. New glyphosate screening technique by infrared thermometry. In: Robyn E, eds. Fourth International Symposium on Adjuvants for Agrochemicals. Australia: New Zealand Forest Research Institute, 1995. pp 297-302
[6] Laury C, Dominique V D S . Imaging techniques in early detection of plant stress. Trends Plant Sci, 2000,5:495-501
doi: 10.1016/S1360-1385(00)01781-7 pmid: 11077259
[7] Amani I, Fischer R A, Reynolds M P . Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci, 2010,176:119-129
doi: 10.1111/j.1439-037X.1996.tb00454.x
[8] Fan T L, Balta M, Rudd J, Payne W A . Canopy temperature depression as a potential selection criterion for drought resistance in wheat. J Integr Agric, 2005,4:793-800
[9] Singh P, Kanemasu E T . Leaf and canopy temperatures of pearl millet genotypes under irrigated and nonirrigated conditions. Agron J, 1983,75:497-501
doi: 10.2134/agronj1983.00021962007500030019x
[10] Jefferies R A . Effects of drought on chlorophyll fluorescence in potato (Solanum tuberosum L.): II. Relations between plant growth and measurements of fluorescence. Potato Res, 1992,35:35-40
doi: 10.1007/BF02357720
[11] Basu P S, Sharma A, Sukumaran N P . Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica, 1998,35:13-19
doi: 10.1023/A:1006801311105
[12] 张永成, 田丰 . 马铃薯实验研究方法. 北京: 中国农业科学技术出版社, 2007. pp 117-123
Zhang Y C, Tian F. Potato Experimental Research Method. Beijing: China Agricultural Science and Technology Press, 2007. pp 117-123(in Chinese)
[13] Bouslama M, Schapaugh W T . Stress tolerance in soybeans: I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci, 1984,24:933-937
doi: 10.2135/cropsci1984.0011183X002400050026x
[14] 徐建飞, 刘杰, 卞春松, 段绍光, 庞万福, 金黎平 . 马铃薯资源抗旱性鉴定和筛选. 中国马铃薯, 2011,25:1-6
doi: 10.3969/j.issn.1672-3635.2011.01.001
Xu J F, Liu J, Bian C S, Duan S G, Pang W F, Jin L P . Evaluation of drought tolerance in potato germplasm. China Potato J, 2011,25:1-6(in Chinese with English abstract)
doi: 10.3969/j.issn.1672-3635.2011.01.001
[15] Deblonde P M K, Ledent J F . Effects of moderate drought conditions on green leaf number, stem height, leaf length and yield of potato cultivars. Eur J Agron, 2001,14:31-41
doi: 10.1016/S1161-0301(00)00081-2
[16] Lahlou O, Ouattar S, Ledent J F . The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 2003,23:257-268
doi: 10.1051/agro:2002089
[17] Richards R A . Defining selection criteria to improve yield under drought. Plant Growth Regul, 1996,20:157-166
doi: 10.1007/BF00024012
[18] Bansal K C, Nagaragan S, Sukumaran N P . A rapid screening technique for drought resistance in potato (Solanum tuberosum L). Potato Res, 1991,34:241-248
[19] Jefferies R A, Mackerron D K L . Carbon isotope discrimination in irrigated and droughted potato. Plant Cell Environ, 1997,20:124-130
doi: 10.1046/j.1365-3040.1997.d01-5.x
[20] Jackson R D . Canopy temperature and crop water stress. Adv Irrig, 1982,1:43-85
doi: 10.1016/B978-0-12-024301-3.50009-5
[21] 刘学著 . 冬小麦冠气温差及其与叶水势的相关性实验研究. 作物学报, 1995,21:528-532
Liu X Z . Winter wheat canopy-air temperature difference and its relation to leaf water potential. Acta Agron Sin, 1995,21:528-532 (in Chinese with English abstract)
[22] Webber H, Martre P, Asseng S, Kimball B, White J . Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Res, 2015,202:21-35
doi: 10.1016/j.fcr.2015.10.009
[23] Jin M, Liu X, Zhang B . Evaluating heavy-metal stress levels in rice using a theoretical model of canopy-air temperature and leaf area index based on remote sensing. IEEE J STARS, 2017,10:3232-3242
doi: 10.1109/JSTARS.2017.2669204
[24] Saryoko A, Fukuda Y, Lubis I, Homma K, Shiraiwa T . Physiological activity and biomass production in crop canopy under a tropical environment in soybean cultivars with temperate and tropical origins. Field Crops Res, 2018,216:209-216
doi: 10.1016/j.fcr.2017.11.012
[25] Conaty W C, Mahan J R, Neilsen J E, Tan D K Y, Yeates S J, . The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Res, 2015,183:329-341
doi: 10.1016/j.fcr.2015.08.010
[26] Han M, Zhang H, Dejonge K C, Comas L H, Trout T J . Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agric Water Manage, 2016,177:400-409
doi: 10.1016/j.agwat.2016.08.031
[27] Reynolds M P, Pfeiffer W H. Applying physiological strategies to improve yield potential. In: Royo C, Nachit M M, Di Fonzo N, Araus J L, eds. Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: CIHEAM-IAMZ, 2000. pp 95-103
[28] Pinter P J, Zipoli G, Reginato R J, Jackson R D . Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric Water Manage, 1990,18:35-48
doi: 10.1016/0378-3774(90)90034-V
[29] Blum A, Shpiler L, Golan G, Mayer J . Yield stability and canopy temperature of wheat genotypes. Field Crops Res, 1989,22:289-296
doi: 10.1016/0378-4290(89)90028-2
[30] 冯佰利, 张宾, 高小丽, 高金峰, 王长发, 张嵩午 . 抗旱小麦的冷温特征及其生理特性分析. 作物学报, 2004,30:1215-1219
doi: 10.3321/j.issn:0496-3490.2004.12.007
Feng B L, Zhang B, Gao X L, Gao J F, Wang C F, Zhang S W . Analysis on lower canopy temperature and physiological characteristics of drought-resistant wheat. Acta Agron Sin, 2004,30:1215-1219 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.12.007
[1] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[4] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[5] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[6] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[7] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[8] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[9] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[10] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[11] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[12] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[13] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[14] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[15] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!