Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (9): 1290-1300.doi: 10.3724/SP.J.1006.2018.01290
• RESEARCH PAPERS • Previous Articles Next Articles
Hong-Dan LI1,2,Lei YAN1,2,Lei SUN1,2,Xiao-Cong FAN1,3,Shi-Zhan CHEN1,3,Yan ZHANG1,3,Lin GUO1,Guang-Xia YOU1,Zhuang LI1,2,Zong-Ju YANG1,2,Liang SU1,*,Jian-Ping YANG1,3,*
[1] | 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平 . 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012,45:3249-3255 |
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P . A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012,45:3249-3255 (in Chinese with English abstract) | |
[2] | Weller J L, Perrotta G , Schreuder M E, van Tuinen A, Koornneef M, Giuliano G, Kendrick R E . Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J, 2001,25:427-440 |
[3] | Giliberto L, Perrotta G, Pallara P, Weller J L, Fraser P D, Bramley P M, Fiore A, Tavazza M, Giuliano G . Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time and fruit antioxidant content. Plant Physiol, 2005,137:199-208 |
[4] |
Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L . Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol, 2005,139:1472-1482
doi: 10.1104/pp.105.067462 pmid: 16244154 |
[5] | Sharma P, Chatterjee M, Burman N, Khurana J P . Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. Plant Cell Environ, 2014,37:961-977 |
[6] |
Yang Z H, Liu B B, Su J, Liao J K, Lin C T, Oka Y . Cryptochromes orchestrate transcription regulation of diverse blue light responses in plants. Photochem Photobiol, 2017,93:112-127
doi: 10.1111/php.12663 pmid: 27861972 |
[7] | Sadanandom A, Ádám É, Orosa B, Viczián A, Klose C, Zhang C, Josse E, Kozma-Bognár L, Nagy F . SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2015,112:11108-11113 |
[8] | Liu B, Yang Z H, Adam Gomez, Liu B, Lin C T, Oka Y . Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J Plant Res, 2016,129:137-148 |
[9] |
Yuan S, Zhang Z W, Zheng C, Zhao Z Y, Wang Y, Feng L Y, Niu G Q, Wang C Q, Wang J H, Feng H, Xu F, Bao F, Hua Y, Cao Y, Ma L G, Wang H Y, Kong D D, Xiao W, Lin H H, He Y K . Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proc Natl Acad Sci USA, 2016,113:7661-7666
doi: 10.1073/pnas.1602004113 pmid: 27325772 |
[10] | Xu F, He S B, Zhang J Y, Mao Z L, Wang W X, Li T, Hua J, Du S S, Xu P B, Li L, Lian H L, Yang H Q . Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol Plant, 2017,11:523-541 |
[11] | Facella P, Daddiego L, Perrotta G . CRY1a influences the diurnal transcription of photoreceptor genes in tomato plants after gibberellin treatment. Plant Signal Behav, 2012,7:1034-1036 |
[12] | Li Y Y, Mao K, Zhao C, Zhang R F, Zhao X Y, Zhang H L, Shu H R, Zhao Y . Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis. Plant Physiol Biochem, 2013,67:169-177 |
[13] |
Zhang Y C, Gong S F, Sang F, Yang H Q . Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. 2006, Plant J, 46:971-983
doi: 10.1111/j.1365-313X.2006.02753.x pmid: 16805731 |
[14] |
Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M . Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol, 2006,47:915-925
doi: 10.1093/pcp/pcj064 pmid: 16760221 |
[15] |
Platten J D, Foo E, Foucher F, Hecht V, Reid J B, Weller J L . The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol Biol, 2005,59:683-696
doi: 10.1007/s11103-005-0828-z pmid: 16244915 |
[16] | Imaizumi T, Kanegae T, Wada M . Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 2000,12:81-96 |
[17] | Imaizumi T, Kadota A, Hasebe M, Wada M . Cryptochrome light signals control development to suppress auxin sensitivity in the moss physcomitrella patens. Plant Cell, 2002,14:373-386 |
[18] | Meng Y Y, Li H Y . Blue light-dependent interaction between cryptochrome 2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 2013,25:4405-4420 |
[19] | Zhang Q Z, Li H Y, Li R, Hu R B, Fan C M, Chen F L, Wang Z H, Liu X, Fu Y F, Lin C T . Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA, 2008,105:21028-21033 |
[20] | Chatterjee M, Sharma P, Khurana J P . Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation . Plant Physiol, 2006,141:61-74 |
[21] |
Liu H T, Liu B, Zhao C X, Pepper M, Lin C T . The action mechanisms of plant cryptochromes. Trends Plant Sci, 2011,16:684-691
doi: 10.1016/j.tplants.2011.09.002 pmid: 3277817 |
[22] | Ahmad M, Cashmore A R . HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor . Nature, 1993,366:162-166 |
[23] |
Guo H W, Yang H Y, Mockler T C, Lin C T . Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998,279:1360-1363
doi: 10.1016/j.pneurobio.2009.12.005. |
[24] | Wu G, Spalding E P . Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci USA, 2007,104:18813-18818 |
[25] |
Yu X H, Klejno J, Zhao X Y, Dror S, Maskit M, Yang H Y, Janet L, Liu X M, Javier L, Lin C T . Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell, 2007,19:3146-3156
doi: 10.1105/tpc.107.053017 |
[26] | Kleine T, Lockhart P, Batschauer A . An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J, 2003,35:93-103 |
[27] | 闫蕾, 杨宗举, 苏亮, 肖阳, 郭林, 宋梅芳, 孙蕾, 孟凡华, 白建荣, 杨建平 . 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式. 作物学报, 2016,42:1298-1308 |
Yan L, Yang Z J, Su L, Xiao Y, Guo L, Song M F, Sun L, Meng F H, Bai J R, Yang J P . Molecular cloning of two maize (Zea mays) CRY1a genes and their expression patterns of in response to different light treatments. Acta Agron Sin, 2016,42:1298-1308 (in Chinese with English abstract) | |
[28] | Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451 |
[29] | Yang Y J, Zuo Z C, Zhao X Y, Li X, John K, Lia Y, Chen P, Liang S P, Yu X H, Liu X M, Lin C T . Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant, 2008,1:167-177 |
[30] |
Wang Q, Liu Q, Wang X, Zuo Z, Oka Y, Lin C . New insights into the mechanisms of phytochrome-cryptochrome coaction. New Phytol, 2018,217:547-551
doi: 10.1111/nph.14886 pmid: 29139123 |
[31] | de Wit M, Keuskamp D H, Bongers F J, Hornitschek P, Gommers C M M, Reinen E, Martínez-Cerón C, Fankhauser C, Pierik R . Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. Curr Biol, 2016,26:3320-3326 |
[32] |
Xu P B, Lian H L, Wang W X, Xu F, Yang H Q . Pivotal roles of the phytochrome-interacting factors in cryptochrome signaling. Mol Plant, 2016,9:496-497
doi: 10.1016/j.molp.2016.02.007 pmid: 26921621 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[5] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[6] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[7] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[8] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[9] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[10] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[11] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[12] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[13] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[14] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
[15] | ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26. |
|