Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1111-1118.doi: 10.3724/SP.J.1006.2019.84127

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model

CUI Yue1,LU Jian-Nong2,SHI Yu-Zhen3,YIN Xue-Gui2,*(),ZHANG Qi-Hao2   

  1. 1 Lingnan Normal University, Zhanjiang 524048, Guangdong, China
    2 College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
    3 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
  • Received:2018-10-07 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-21
  • Contact: Xue-Gui YIN E-mail:yinxuegui@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31271759);the Guangdong Provincial Science and Technology Projects(2013B060400024);the Guangdong Provincial Science and Technology Projects(2014A020208116);the Guangdong Provincial Science and Technology Projects(2016A020208015);Project of Enhancing School with Innovation of Guangdong Ocean University(GDOU2013050206)

Abstract:

In this study, plant height related traits in Ricinus communis L. were analyzed using the mixed major gene plus polygenes genetic model with two groups of six-generation populations (P1, P2, F1, B1, B2, and F2) derived from the cross YC2×YF1. The results revealed that the plant height was controlled by a pair of major gene and polygenes. The major-gene heritability in B1, B2, and F2 populations was 37.05%/49.57% (group I/group II), 30.51%/34.48%, and 43.98%/43.64%, respectively. The bearing height of primary raceme and the node number of main stems were all controlled by two pairs of major genes and polygenes, with the importance of major-gene genetic components in the order of epistasis >dominance >additive. In the three generations the heritability of major genes conferring the bearing height of primary raceme was 67.91%/92.72%, 86.89%/92.13%, and 60.18%/66.87%, respectively, and that of major genes conferring the node number of main stem were 91.83%/91.50%, 35.22%/63.37%, and 85.76%/94.58%, respectively. As for the length of main stem internode, it was fully controlled by polygenes, the heritability was 47.64%/47.64%, 38.87%/38.87%, and 25.25%/52.71%, respectively. The above genetic models explained the positive transgressive inheritance of plant height, the bearing height of primary raceme and the length of main stem internode as well as the similar performance to the low value parent of the node number of main stem in F1 generation. It suggested that the bearing height of primary raceme and the node number of main stem should be used as indirect selection indexes for plant height at early stage and the node number of main stem of lower value parent should not be too little in high yield breeding.

Key words: Ricinus communis L., plant height related traits, major gene plus polygene model, genetic analysis

Table 1

Characteristics of plant height related traits in six generations"

性状
Trait
世代
Generation
单株数
No. of plants
最大值
Max
最小值
Min
极差
Rage
平均值
Mean
标准差
SD
变异系数
CV (%)
株高
PH (cm)
P1 33 226.00 184.00 42.00 208.12 9.03 4.34
P2 32 110.00 74.00 36.00 98.03 8.22 8.39
F1 35 245.00 224.00 21.00 230.84 1.53 0.66
B1 51 238.00 100.00 138.00 171.12 6.74 3.94
B2 48 198.00 77.00 121.00 135.82 6.21 4.57
F2-1 162 260.00 60.00 200.00 159.51 38.14 23.91
F2-2 121 281.00 80.00 201.00 174.10 45.96 26.40
主穗位高
PRH (cm)
P1 33 112.00 87.00 25.00 101.69 5.35 5.26
P2 32 38.00 24.00 14.00 31.33 3.17 10.13
F1 35 129.00 118.00 11.00 125.01 3.48 2.78
B1 51 100.00 49.00 51.00 75.65 15.80 20.89
B2 48 94.00 39.00 55.00 63.42 16.02 25.26
F2-1 162 105.00 12.00 93.00 57.52 22.18 37.35
F2-2 121 137.00 29.00 108.00 69.04 34.05 45.90
主茎节数
MSNN
P1 33 15 9 6 12.12 1.96 16.17
P2 32 31 21 10 26.89 2.38 8.85
F1 35 15 10 5 12.96 1.51 11.65
B1 51 15 9 6 10.68 1.65 15.45
B2 48 25 9 16 14.84 3.14 21.16
F2-1 162 31 4 27 14.56 4.48 30.77
F2-2 121 29 5 24 14.99 4.86 32.42
主茎节长MSIL (cm) P1 33 11.20 5.40 5.80 8.14 1.36 16.71
P2 32 1.60 0.90 0.70 1.19 0.14 11.76
F1 35 12.10 9.00 3.10 10.25 0.91 8.88
B1 51 9.00 4.45 4.55 6.52 1.24 19.02
B2 48 7.58 2.81 4.77 5.14 1.22 23.74
F2-1 162 7.30 1.58 5.72 4.17 1.16 27.82
F2-2 121 9.55 2.00 7.55 4.99 1.46 29.26

Fig. 1

Frequency distributions of plant height traits in six-generation population"

Table 2

Test for goodness-of-fit of selected genetic models"

性状
Trait
模型
Model
模型含义
Implication of model
极大对数似然函数值
Max log likelihood value
AIC 值
AIC value
适合性检验a
Test of goodness-of-fita
I组 株高 PH D-0 MX1-AD-ADI -1215.34 2458.23 0/0/0/0/0
Group I 主穗位高 PRH E-1 MX2-ADI-AD -1033.05 2097.31 0/0/0/0/0
主茎节数 MSNN E-1 MX2-ADI-AD -648.77 1326.46 0/0/0/0/0
主茎节长 MSIL C-0 PG-ADI -404.12 827.38 0/0/0/0/0
II组 株高 PH D-0 MX1-AD-ADI -898.87 1821.42 0/0/0/0/0
Group II 主穗位高 PRH E-1 MX2-ADI-AD -776.23 1585.13 0/0/0/0/0
主茎节数 MSNN E-1 MX2-ADI-AD -475.89 981.14 0/0/0/0/0
主茎节长 MSIL C-0 PG-ADI -324.56 668.02 0/0/0/0/0

Table 3

Estimates of genetic parameters for plant height related traits"

世代
Generation
遗传参数
Genetic
parameter
株高 PH 主穗位高 PRH 主茎节数 MSNN 主茎节长 MSIL
(D-0)
I
(D-0)
II
(E-0)
I
(E-0)
II
(E-0)
I
(E-0)
II
(C-0)
I
(C-0)
II
da 35.87 41.63 -9.39 -3.88 -4.44 -4.58
db -9.39 -3.88 -4.44 -4.58
ha -4.85 -8.27 17.78 10.22 -6.60 -7.27
hb 17.78 10.16 -8.17 -7.68
i 42.42 42.72 -0.07 -1.34
jab -11.82 0.77 2.30 0.28
jba -11.82 -16.41 3.88 3.12
l 40.39 29.78 9.12 7.79
[d] 16.54 27.51 -0.57 1.95
[h] 95.17 83.79 -3.08 -0.47
ha/da -0.14 -0.20 -1.89 -2.64 1.49 1.59
hb/db -1.89 -2.64 1.84 1.68
B1 σ2p 1243.83 1235.34 255.84 255.84 2.94 2.94 1.91 1.91
σ2mg 460.84 612.36 173.74 237.22 2.70 2.69
σ2pg 718.38 561.23 64.80 1.32 0.00 0.00 0.91 0.91
h2mg (%) 37.05 49.57 67.91 92.72 91.83 91.50
h2pg (%) 57.86 45.31 25.40 0.53 0.00 0.00 47.64 47.64
B2 σ2p 899.84 900.96 282.33 282.33 13.46 13.46 1.65 1.65
σ2mg 274.54 310.65 245.32 260.11 4.74 8.53
σ2pg 561.03 524.54 20.07 5.35 5.42 2.90 0.64 0.64
h2mg (%) 30.51 34.48 86.89 92.13 35.22 63.37
h2pg (%) 62.21 58.15 7.07 1.86 40.32 21.55 38.87 38.87
F2 σ2p 1448.34 2086.94 380.38 779.11 20.09 23.63 1.35 2.12
σ2mg 636.98 910.74 228.91 520.99 17.23 22.35
σ2pg 754.25 1138.15 135.22 241.46 0.00 0.00 0.34 1.12
h2mg (%) 43.98 43.64 60.18 66.87 85.76 94.58
h2pg (%) 51.54 53.47 35.45 30.94 0.00 0.00 25.25 52.71

Table 4

Correlation coefficients between plant height related traits"

性状Trait 株高PH 主穗位高PRH 主茎节数MSNN 主茎节长MSIL
株高 PH 0.844** 0.474** 0.709**
主穗位高 PRH 0.725** 0.726** 0.613**
主茎节数 MSNN 0.309** 0.569** -0.242**
主茎节长 MSIL 0.508** 0.600** -0.254**
[1] 李金琴, 朱国立, 吴国林, 何智彪, 李靖霞, 张春华, 田福东, 贾娟霞 . 蓖麻种子含油量与主要数量性状的相关及通径分析. 中国油料作物学报, 2004,26(2):43-46.
Li J Q, Zhu G L, Wu G L, He Z B, Li J X, Zhang C H, Tian F D, Jia J X . Correlation and path analysis between seed oil content and major quantitative characters in Castor. Chin J Oil Crop Sci, 2004,26(2):43-46 (in Chinese with English abstract).
[2] Anjani K . Castor genetic resources: A primary gene pool for exploitation. Ind Crop Prod, 2012,35:1-14.
doi: 10.1016/j.indcrop.2011.06.011
[3] Donald C M . The breeding of crop ideotypes. Euphytica, 1968,17:385-403.
doi: 10.1007/BF00056241
[4] Hedden P . The genes of the green revolution. Trends Genet, 2003,19:5-9.
doi: 10.1016/S0168-9525(02)00009-4
[5] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y . Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17.
[6] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P . “Green revolution” genes encode mutant gibberellin response modulators. Nature, 1999,400:256-261.
doi: 10.1038/22307
[7] Johnson E C, Fischer K S, Edmeades G O, Palmer A F E . Recurrent selection for reduced plant height in lowland tropical maize. Crop Sci, 1986,26:253-260.
doi: 10.2135/cropsci1986.0011183X002600020008x
[8] Foisset N, Delourme R, Barret P, Renard M . Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet, 1995,91:756-761.
[9] Sun D S, Li W B, Zhang Z C . Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor Appl Genet, 2006,112:665-673.
[10] 王坤波, 刘正德 . 试论棉花矮化育种. 中国棉花, 1996,23(9):2-3.
Wang K B, Liu Z D . Try theory China cotton breeding for semidwarfnese. China Cotton, 1996, 23(9):2-3 (in Chinese).
[11] 孙小镭, 邬树桐, 宋绪峨 . 中国矮生刺黄瓜品系特性研究初报. 园艺学报, 1990,17:59-64.
Sun X L, Wu S T, Song X E . Studies on characters and genetic effects of determinate cucumber. Acta Hortic Sin, 1990,17:59-64 (in Chinese with English abstract).
[12] 高奋明, 姜勇, 孔德伟, 李仕贵 . 水稻株高的遗传控制及其在育种上的应用. 分子植物育种, 2005,3:87-93.
Gao F M, Jiang Y, Kong D W, Li S G . Genetic control of plant height and its utilization in rice. Mol Plant Breed, 2005,3:87-93 (in Chinese with English abstract).
[13] 赵磊 . 水稻株型与产量控制基因PAY1的克隆与功能分析. 中国农业大学博士学位论文,北京, 2015.
Zhao L . Cloning and Functional Analysis of the PAY1 Gene Controlling Plant Architecture and Grain Yield of Rice (Oryza sativa L.). PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[14] 陈广凤, 陈建省, 田纪春 . 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015,41:1500-1509.
Chen G F, Chen J S, Tian J C . Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agron Sin, 2015,41:1500-1509 (in Chinese with English abstract).
[15] 杨松杰, 张晓科, 何中虎, 夏先春, 周阳 . 用STS标记检测矮秆基因Rht-B1bRht-D1b在中国小麦中的分布. 中国农业科学, 2006,39:1680-1688.
Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y . Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006,39:1680-1688 (in Chinese with English abstract).
[16] 林泽川, 曹立勇 . 水稻株型相关基因的定位与克隆研究进展. 中国稻米, 2014,20(1):17-22.
doi: 10.3969/j.issn.1006-8082.2014.01.004
Lin Z C, Cao L Y . Advances in mapping and cloning plant type related genes on rice. Chin Rice, 2014,20(1):17-22 (in Chinese).
doi: 10.3969/j.issn.1006-8082.2014.01.004
[17] 赵延明 . 玉米穗位高遗传效应及其与环境互作效应分析. 玉米科学, 2009,17(2):12-14.
Zhao Y M . Analysis of genetic effect and genetype by environment of ear height on maize. Maize Sci, 2009,17(2):12-14 (in Chinese with English abstract).
[18] 兰进好, 褚栋 . 玉米株高和穗位高遗传基础的QTL剖析. 遗传, 2005,27:925-934.
Lan J H, Chu D . Study on the genetic basis of plant height and ear height in Maize (Zea mays L.) by QTL dissection. Hereditas, 2005,27:925-934 (in Chinese with English abstract).
[19] 杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓 . 玉米株高和穗位高的QTL定位. 遗传, 2008,30:1477-1486.
Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X . QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas, 2008,30:1477-1486 (in Chinese with English abstract).
[20] Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y. Zheng Y . The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed, 2010,129:376-384.
[21] Yuan L Z, Tang J H, Wang X P, Li C H . QTL analysis of shading sensitive related traits in maize under two shading treatments. PLoS One, 2012,7:e38696.
doi: 10.1371/journal.pone.0038696
[22] Cai H G, Chu Q, Gu R L, Yuan L X, Liu J C, Zhang X Z, Chen F J, Mi G H, Zhang F S . Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breed, 2012,131:502-501.
[23] 彭静, 蔡一林, 徐德林, 王国强 . 玉米株型性状多世代联合遗传分析. 生物数学学报, 2009,24:149-156.
Peng J, Cai Y L, Xu D L, Wang G Q . Genetic analysis of plant type traits in joint multi-generational on maize. J Mathematical Biol, 2009,24:149-156 (in Chinese).
[24] 赵刚, 吴子恺, 王兵伟 . 微胚乳超高油玉米株高和穗位高的主基因+多基因遗传模型. 安徽农业科学, 2007,35:5096-5098.
Zhao G, Wu Z K, Wang B W . Major gene plus polygene inheritance of plant height and ear height in microedosperm super-high oil corn. J Anhui Agric Sci, 2007,35:5096-5098 (in Chinese with English abstract).
[25] 王铁固, 马娟, 张怀胜, 陈士林 . 玉米穗位高的主基因+多基因的遗传模型分析. 贵州农业科学, 2012,40(4):10-13.
Wang T G, Ma J, Zhang H S, Chen S L . Analysis of major gene plus polygenes genetic model for ear height of maize. Guizhou Agric Sci, 2012,40(4):10-13 (in Chinese with English abstract).
[26] 邱正高, 王贵学, 杨华, 祁志云, 柯剑鸿, 张胜恒, 蔡治荣 . 航空诱变糯玉米突变体株高穂位高遗传模型. 西南大学学报(自然科学版), 2008,30(3):60-65.
Qiu Z G, Wang G X, Yang H, Qi Z Y, Ge Z H, Zhang S H, Cai Z R . Air mutagenesis mutant waxy corn plant height raceme bits of genetic models. J Southwest Univ (Nat Sci Edn), 2008,30(3):60-65 (in Chinese with English abstract).
[27] 蔡立楠 . 大豆主要农艺性状和品质性状的主基因多基因混合遗传分析. 吉林农业大学硕士学位论文, 吉林长春, 2012.
Cai L N . Studies on the Major Gene Plus Polygene Interitance of Principal Agronomy Traits and Quality Traits in Soybean. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2012 (in Chinese with English abstract).
[28] 曹永强, 董丽杰, 吕桂兰, 孙旭刚, 王文斌, 宋书宏, 谢甫绨 . 大豆不同亲本正、反交F2、F3、BC1F2主茎节数遗传规律研究. 大豆科技, 2009, ( 1):18-21.
Cao Y Q, Dong L J, Lyu G L, Sun X G, Wang W B, Song S H, Xie F T . Different parents soybean reciprocal crosses F2, F3, BC1F2 stem node number genetic research. Soybean Sci Technol, 2009, ( 1):18-21 (in Chinese with English abstract).
[29] 李玉清 . 大豆种间杂交主要农艺性状的母体效应研究初报. 作物杂志, 2006, ( 6):28-30.
Li Y Q . Soybean interspecific hybridization main agronomic traits of maternal effect at the beginning of the study. Crops, 2006, ( 6):28-30 (in Chinese).
[30] 林国强, 徐树传, 黄建成, 陈志雄 . 大豆不同亲本类型F2主要性状遗传参数分析. 植物遗传资源学报, 2001,2(2):12-15.
Lin G Q, Xu S C, Huang J C, Chen Z X . Analysis of genetic parameters of main characteristics of F2 in different parent forms in soybean. J Plant Genetic Resour, 2001,2(2):12-15 (in Chinese with English abstract).
[31] 齐振宇, 李俊星, 邹晓霞, 曹丽雯, 饶琳莉, 俞金龙, 陈利萍 . 甜瓜株型性状的遗传分析. 农业生物技术学报, 2015,23:302-310.
Qi Z Y, Li J X, Zou X X, Cao L W, Rao L L, Yu J L, Chen L P . Genetic analysis of plant architecture traits in melon (Cucumis melo L.). J Agric Biotechnol, 2015,23:302-310 (in Chinese with English abstract).
[32] 张建华 . 玉米DH群体株高、节间长、穗部性状和一般配合力的分析及QTL定位. 河北农业大学博士学位论文, 河北保定, 2009.
Zhang J H . Plant Height, Internodes, Ear traits, General Combining Ability Analysis and Their QTLs Mapping Using Double Haploid Lines of Maize. PhD Dissertation of Agricultural University of Hebei, Baoding, Hebei, China, 2009 (in Chinese with English abstract).
[33] Severino L S, Auld D L, Baldanzi M, Cândido M J D, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C, Machado O L T, Mielke T, Milani M, Miller T D, Morris J B, Morse S A, Navas A A, Soares D J, Sofiatti V, Wang M L, Zanotto M D, Zieler H . A review on the challenges for increased production of castor. Agron J, 2012,104:853-870.
doi: 10.2134/agronj2011.0210
[34] Zimmerman L H . The relationship of a Dwarf-Internode gene to several important agronomic characters in Castorbeans. Agron J, 1957,49:251-254.
doi: 10.2134/agronj1957.00021962004900050009x
[35] Athma P, Vaidyanath K, Reddy T P . Peroxidase isoenzyme studies in certain varieties of Ricinus communis L. Indian J Bot, 1982,5:178-182.
[36] Rao P V R, Shankar V G, Reddy A V . Variability studies in castor (Ricinus communis L.). Res Crops, 2009,10:696-698.
[37] 姚远, 李凤山, 陈永胜, 李金琴, 黄凤兰, 王永佳 . 国内外蓖麻研究动态. 内蒙古民族大学学报, 2009,24(2):172-174.
Yao Y, Li F S, Chen Y S, Li J Q, Huang F L, Wang Y J . Research progress on castor. J Inner Mongolia Univ Nationalities, 2009,24(2):172-174 (in Chinese with English abstract).
[38] 顾名勋 . 蓖麻农艺性状与产量关系的分析. 内蒙古农业科技, 1984, ( 1):31-37.
Gu M X . Castor relationship between agronomic characters and yield analysis. Inner Mongolia Agric Sci Technol, 1984, ( 1):31-37 (in Chinese).
[39] 邓崇辉, 孙强 . 蓖麻主要数量性状的相关和通径分析. 吉林农业科学, 1992, ( 3):25-28.
Deng C H, Sun Q . A correlation and path coefficient analysis of main quantitative characters in castor. Jilin Agric Sci, 1992, ( 3):25-28 (in Chinese with English abstract).
[40] 李金琴, 张智勇, 何智彪, 贾娟霞, 乔文杰 . 矮秆蓖麻杂交种产量与主要农艺性状的相关及多元回归分析. 内蒙古民族大学学报(自然科学版). 2010,25(1):40-43.
Li J Q, Zhang Z Y, He Z B, Jia J X, Qiao W J . Dwarf castor-oil plant hybrids yield and the main agronomic characters of correlation and multiple regression analysis. J Inner Mongolia Univ Nat(Nat Sci Edn), 2010,25(1):40-43 (in Chinese with English abstract).
[41] 李金琴, 朱国立, 何智彪, 张智勇, 贾娟霞, 乔文杰, 李靖霞 . 蓖麻矮秆性状基因遗传规律研究. 内蒙古农业科技, 2010, ( 1):54-56.
Li J Q, Zhu G L, He Z B, Zhang Z Y, Jia J X, Qiao W J, Li J X . Study on the genetic regularity of castor bean dwarf characters gene. Inner Mongolia Agric Sci Technol, 2010, ( 1):54-56 (in Chinese with English abstract).
[42] 刘臣, 陆建农, 殷学贵, 毕川, 文淡悠, 郑军, 刘帅, 石卓兴, 成粤湘 . 基于QTL定位的蓖麻株高性状遗传解析. 作物学报, 2014,40:751-759.
Liu C, Lu J N, Yin X G, Bi C, Wen D Y, Zheng J, Liu S, Shi Z X, Cheng Y X . Genetic analysis of traits related to plant height in Ricinus communis L. based on QTL mapping. Acta Agron Sin, 2014,40:751-759 (in Chinese with English abstract).
[43] 张智勇, 倪娜, 王建, 朱国立, 莫德乐吐, 乔文杰, 贾娟霞, 何智彪, 甘茂杰 . 蓖麻主穗开花期的主基因+多基因混合遗传分析. 内蒙古农业科技, 2015,43(1):10-12.
Zhang Z Y, Ni N, Wang J, Zhu G L, Mo D L T, Qiao W J, Jia J X, He Z B, Gan M J . Major gene plus poly-gene inheritance analysis of the main raceme flowing period in castor (Ricinus communis L.). Inner Mongolia Agric Sci Technol, 2015,43(1):10-12 (in Chinese with English abstract).
[44] 严兴初 . 蓖麻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 12-19.
Yan X C. Castor Bean Germplasm Resource Description Specification and Standard Data. Beijing: China Agriculture Press, 2005. pp 12-19(in Chinese).
[45] 章元明, 盖钧镒 . 数量性状分离分析中分布参数估计的IECM算法. 作物学报, 2000,26:699-705.
Zhang Y M, Gai J Y . The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits. Acta Agron Sin, 2000,26:699-705 (in Chinese with English abstract).
[46] 王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈爱宜 . 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008,41:1274-1282.
Wang C W, Gai J Y, Fu S X, Yu D Y, Chen S Y . Inheritance and QTL mapping of tofu and soymilk output in soybean. Sci Agric Sin, 2008,41:1274-1282 (in Chinese with English abstract).
[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[5] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[6] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[7] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[8] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[9] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[10] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[11] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
[12] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[13] WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655.
[14] Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366.
[15] Ying-Shuang LI,Dan HU,Jiao NIE,Ke-Hui HUANG,Yu-Ke ZHANG,Yuan-Li ZHANG,Heng-Zhi SHE,Xiao-Mei FANG,Ren-Wu RUAN,Ze-Lin YI. Genetic Analysis of Plant Height and Stem Diameter in Common Buckwheat [J]. Acta Agronomica Sinica, 2018, 44(8): 1185-1195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!