Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (02): 290-299.doi: 10.3724/SP.J.1006.2020.93027

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation

FU Jiang-Peng,HE Zheng,JIA Biao(),LIU Hui-Fang,LI Zhen-Zhou,LIU Zhi   

  1. School of Agriculture Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2019-04-19 Accepted:2019-08-09 Online:2020-02-12 Published:2019-12-11
  • Contact: Biao JIA E-mail:jiabiao2008@163.com
  • Supported by:
    The study was supported by the National Natural Science Foundation of China(31560339);the Ningxia Higher Education Research Project(NGY2017025)

Abstract:

The objective of this study was to establish the critical nitrogen dilution curve of maize in Yellow River irrigation area of Ningxia province, China, and to study the feasibility of the nitrogen nutrition index model (NNI) for real-time diagnosing and evaluating nitrogen nutrition in maize, which would provide theoretical basis for rational nitrogen fertilization of drip-irrigated maize. The research was carried out with ‘Tianci 19’, using the integrated technology of drip irrigation and fertilizer with six nitrogen levels. The critical nitrogen dilution curve model was constructed and verified by a 2-year fixed position experiment. Within a certain range, the dry matter accumulation of drip-irrigated maize increased with the increase of nitrogen application rate. According to the variance analysis, the aboveground biomass in maize growth period was divided into two types: nitrogen limited and nitrogen non-limited. The nitrogen concentration of drip-irrigated maize plant increased with the increase of nitrogen application rate, while decreased with the extension of growth period and the increase of aboveground dry matter weight. The critical nitrogen concentration (Nc), maximum nitrogen concentration (Nmax) and minimum nitrogen concentration (Nmin) dilution models of drip irrigated maize showed a power function relationship with the aboveground dry matter accumulation, with the determination coefficient R 2 of 0.982, 0.907, and 0.918, respectively. The verification using root mean square error (RMSE) and normalized root mean square error (n-RMSE) showed that the model had good stability and small error range. NNI can be used to measure the nitrogen nutrition status of drip-irrigated maize. Under the integration condition with drip-irrigation and fertilizer, the optimal nitrogen application rate for maize grown in Yellow River irrigation area of Ningxia should be 270 kg hm -2. According to the model calculations of, NNI with relative nitrogen uptake (RNupt), relative aboveground biomass (RGW) and relative yield (RY) reached extremely significant levels. The critical nitrogen dilution curve model and nitrogen nutrition index model established in this study can accurately predict the nitrogen nutrition status of maize from the bell stage to the maturity stage under the integrated condition with water and fertilizer, so as to provide guidance for optimizing the nitrogen management of maize.

Key words: water-fertilizer integration, maize, plant nitrogen concentration, critical nitrogen dilution curve, nitrogen nutrition index

Fig. 1

Meteorological conditions during the growth period of maize"

Table 1

Foundation fertility of soil at experimental fields"

年份
Year
pH 有机质
OM
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
碱解氮
Avail. N
(mg kg-1)
速效磷
Avail. P
(mg kg-1)
速效钾
Avail. K
(mg kg-1)
2017 7.98 11.45 0.80 0.51 37.37 19.04 102.52
2018 7.65 12.82 0.75 0.48 36.82 17.37 95.31

Table 2

Dynamic changes of dry matter accumulation in aboveground parts of drip irrigation maize"

年份
Year
生育时期
Growing period
地上部生物量Aboveground biomass (t hm-2)
N0 N90 N180 N270 N360 N450
2017 V10 1.24±0.24 c 1.31±0.18 bc 1.52±0.76 bc 1.75±0.56 abc 2.19±0.11 ab 2.53±0.57 a
V13 3.05±0.80 d 3.56±0.39 cd 3.64±0.32 cd 3.96±0.09 bc 4.59±0.17 ab 4.77±0.21 a
R1 4.43±0.89 c 4.9±0.30 bc 5.04±0.43 bc 6.21±1.11 ab 7.34±1.19 a 7.66±0.88 a
R3 6.43±0.47 c 6.58±0.36 c 7.40±0.67 c 8.95±0.64 b 10.44±0.50 a 11.02±0.84 a
R5 8.99±0.61 c 9.75±0.12 c 11.80±0.12 b 12.08±0.93 b 13.40±0.43 a 13.12±0.55 a
R6 10.88±0.74 d 12.93±0.32 c 14.04±0.76 b 15.11±0.09 a 15.42±0.86 a 15.14±0.14 a
2018 V10 1.35±0.21 b 1.50±0.29 b 1.51±0.06 b 1.57±0.17 b 1.73±0.93 a 1.74±0.32 a
V13 1.89±0.29 c 2.48±0.44 b 2.53±0.10 b 2.86±0.19 b 3.26±0.06 a 3.48±0.08 a
R1 4.95±0.40 d 5.79±0.65 cd 6.25±0.61 bc 6.62±0.48 ab 7.78±0.92 ab 8.76±0.89 a
R3 6.27±0.61 d 7.16±0.59 c 8.80±0.17 b 8.92±0.12 b 10.91±0.46 a 10.79±0.42 a
R5 8.92±0.91 c 9.91±0.51 bc 10.44±1.11 bc 11.21±0.89 b 13.26±1.08 a 12.91±0.76 a
R6 10.03±0.52 e 11.06±0.29 d 12.55±0.73 c 13.47±0.13 b 16.08±0.47 a 14.82±0.45 a

Fig. 2

Dynamic changes of nitrogen concentration in maize plant widen drip irrigation Abbreviations are the same as those given in Table 2."

Fig. 3

Dilution curve of critical nitrogen concentration in drip irrigation maize"

Fig. 4

Model verification of dilution curve of critical nitrogen concentration in drip irrigation maize"

Fig. 5

Dynamic changes of nitrogen nutrition index in drip irrigation maize NNI: nitrogen nutrition index. Abbreviations are the same as those given in Table 2."

Fig. 6

Relationship between NNI and relative nitrogen uptake RNupt in drip irrigation maize NNI: nitrogen nutrition index; RNupt: relative nitrogen uptake. Abbreviations are the same as those given in Table 2."

Fig. 7

Relationship between nitrogen nutrition index and relative dry matter of drip irrigation maize NNI: nitrogen nutrition index; RDW: relative dry matter. Abbreviations are the same as those given in Table 2."

Fig. 8

Relationship between nitrogen nutrition index and relative yield of drip irrigation maize NNI: nitrogen nutrition index; RY: relative yield."

[1] Mosisa W, Marianne B, Gunda S, Dennis F, Alpha O D, Walter J H . Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci, 2007,47:519-528.
doi: 10.1371/journal.pone.0199492 pmid: 29949626
[2] Judith N, Adrien N D, Martin H C, Marc R L . Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Sci Soc Am, 2009,73:317-327.
doi: 10.2136/sssaj2007.0374
[3] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S . Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[4] Ziadi N, Brassard M, Bélanger G, Cambouris A N, Tremblay N N, Michel C, Claessens A, Parent L . Critical nitrogen curve and nitrogen nutrition index for corn in eastern canada. Agron J, 2008,100:271-276.
doi: 10.2134/agronj2007.0059
[5] Greenwood D J, Gastal F, Lemaire G . Growth rate and %N of field grown crops: theory and experiments. Ann Bot, 1991,67:181-190.
doi: 10.1093/oxfordjournals.aob.a088118
[6] Greenwood D J, Lemaire G, Goss P, Cruz A . Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot, 1990,66:425-436.
doi: 10.1093/oxfordjournals.aob.a088044
[7] Lemaire G, Gastal F, Cruz P, Greenwood D J, Draycott A. Relationships between plant-N, plant mass and relative growth rate for C3 and C4 crops. In: Scaife A ed. Proceedings of the First European Society of Agronomy Congress, Paris, France, 1990. pp 1-5.
[8] Huang S Y . A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere, 2018,28:814-822.
[9] 吕茹洁, 商庆银, 陈乐, 曾勇军, 胡水秀, 杨秀霞 . 水稻基于临界氮浓度的水稻氮素营养诊断研究. 植物营养与肥料学报, 2018,24:1396-1405.
Lyu R J, Shang Q Y, Chen L, Zeng Y J, Hu S X, Yang X X . Diagnostic study of nitrogen nutrition in rice based on critical nitrogen concentration. J Plant Nutr Fert, 2018,24:1396-1405 (in Chinese with English abstract).
[10] Zia D N, Belanger G, Claessens A . Determination of a critical nitrogen dilution curve for spring wheat. Agron J, 2010,102:241-250.
doi: 10.2134/agronj2009.0266
[11] 李正鹏, 冯浩, 宋明丹 . 关中平原冬小麦临界氮稀释曲线和氮营养指数研究. 农业机械学报, 2015,46(10):177-183.
Li Z P, Feng H, Song M D . Study on critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in Guanzhong Plain. Trans CSAM, 2015,46(10):177-183 (in Chinese with English abstract).
[12] Giletto C M, Echeverría H E . Critical nitrogen dilution curve for processing potato in Argentinean humid pampas. Am J Potato Res, 2012,89:102-110.
doi: 10.1007/s12230-011-9226-z
[13] 马露露, 吕新, 张泽, 马革新, 海兴岩 . 基于临界氮浓度的滴灌棉花氮素营养诊断模型研究. 农业机械学报, 2018,49(2):277-283.
Ma L L, Lyu X, Zhang Z, Ma G X, Hai X Y . Study on nitrogen nutrition diagnosis model of cotton under drip irrigation based on critical nitrogen concentration. Trans CSAM, 2018,49(2):277-283 (in Chinese with English abstract).
[14] 石小虎, 蔡焕杰 . 基于叶片SPAD估算不同水氮处理下温室番茄氮营养指数. 农业工程学报, 2018,34(17):124-134.
Shi X H, Cai H J . Estimation of nitrogen nutrition index of greenhouse tomato under different water and nitrogen treatment based on leaf SPAD. Trans CSAE, 2018,34(17):124-134 (in Chinese with English abstract).
[15] Plénet D, Lemaire G . Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops, determination of critical N concentration. Plant Soil, 1999,216:65-82.
doi: 10.1023/A:1004783431055
[16] Herrmann A, Taube F . The range of the critical N dilution curve for maize can be extended until silage maturity. Agron J, 2004,96:1131-1138.
doi: 10.2134/agronj2004.1131
[17] Ziadi N, Brassard M, Bélanger G, Cambouris A N, Tremblay N, Nolin M C, Claessens A, Parent L E . Critical N curve and N nutrition index for corn in Eastern Canada. Agron J, 2008,100:271-276.
doi: 10.2134/agronj2007.0059
[18] Yue S C, Sun F L, Meng Q F . Validation of a critical nitrogen curve for summer maize in the north China plain. Pedosphere, 2014,24:76-83.
[19] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利 . 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013,39:292-299.
doi: 10.3724/SP.J.1006.2013.00292
Liang X G, Zhang J T, Zhou L L, Li X H, Zhou S L . Study on critical nitrogen dilution curve and nitrogen nutrition index of summer maize in north China. Acta Agron Sin, 2013,39:292-299 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00292
[20] 李正鹏, 宋明丹, 冯浩 . 关中地区玉米临界氮浓度稀释曲线的建立和验证. 农业工程学报, 2015,31(13):135-141.
Li Z P, Song M D, Feng H . Establishment and verification of dilution curve of critical nitrogen concentration in maize in Guanzhong area. Trans CSAE, 2015,31(13):135-141(in Chinese with English abstract).
[21] 银敏华, 李援农, 谷晓博, 周昌明, 董丽利, 张天乐 . 氮肥运筹对夏玉米氮素盈亏与利用的影响. 农业机械学报, 2015,46(10):167-176.
Yin M H, Li Y N, Gu X B, Zhou C M, Dong L L, Zhang T L . Effects of nitrogen fertilizer management on nitrogen profit and loss and utilization of summer maize. Trans CSAM, 2015,46(10):167-176 (in Chinese with English abstract).
[22] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良 . 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019,25:123-133.
An Z C, Huang Y F, Wang Y, Zhao Y N, Yue S H, Shi H B, Ye Y L . Dilution model of critical nitrogen concentration and nitrogen nutrition in summer maize with different nitrogen efficiency. J Plant Nutr Fert, 2019,25:123-133 (in Chinese with English abstract).
[23] 王永宏 . 宁夏玉米栽培. 北京: 中国农业科学技术出版社, 2014. pp 17-19.
Wang Y H. Corn Cultivation in Ningxia. Beijing: China Agricultural Science and Technology Press, 2014. pp 17-19(in Chinese).
[24] Brye K R, Norman J M, Gower S T . Methodological limitations and N-budget differences among a restored tallgrass prairie and maize agroecosystems. Agric Ecosyst Environ, 2003,97:181-198.
doi: 10.1016/S0167-8809(03)00067-7
[25] Allen R G . Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol, 2000,229:27-41.
doi: 10.1016/S0022-1694(99)00194-8
[26] Justes E, Mary B, Meynard J M . Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot, 1994,74:397-407.
doi: 10.3389/fpls.2017.01517 pmid: 28928757
[27] Willmott C J . Some comments on the evaluation of model performance. Bull Am Meteorol Soc, 1982,63:1309-1369.
doi: 10.1016/j.jsurg.2019.06.012 pmid: 31281109
[28] Yang J, Greenwood D J, Rowell D L . Statistical methods for evaluating a crop nitrogen simulation model, N-ABLE. Agric Syst, 2000,64:37-53.
doi: 10.1016/S0308-521X(00)00010-X
[29] Jamieson P D, Porter J R, Wilson D R . A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991,27:337-350.
doi: 10.1016/0378-4290(91)90040-3
[30] Lemaire G, Onillon B, Onillon G . Nitrogen distribution within a Luceme canopy during regrowth: relation with light distribution. Ann Bot, 1991,68:483-488.
doi: 10.1093/oxfordjournals.aob.a088286
[31] 赵如浪, 杨滨齐, 王永宏, 赵健, 张文杰, 孙发国, 谢铁娜 . 宁夏高产玉米群体产量构成及生长特性研究. 玉米科学, 2014,22(3):60-66.
Zhao R L, Yang B Q, Wang Y H, Zhao J, Zhang W J, Sun F G, Xie T L . Yield structure and growth characteristics of high yield maize population in Ningxia. J Maize Sci, 2014,22(3):60-66 (in Chinese with English abstract).
[32] Liu J L, Zhan A, Bu L D, Zhu L, Luo S S, Chen X P, Cui Z L, Li S Q, Hill R L, Zhao Y . Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agron J, 2014,106:390-396.
doi: 10.2134/agronj2013.0404
[33] Yue S, Sun F, Meng Q, Zhao R, Li F, Chen X, Zhang F . Validation of a critical nitrogen curve for summer maize in the North China Plain. Pedosphere, 2014,24:76-83.
[34] Lemaire G, Gastal F . Nitrogen Uptake and Distribution in Plant Canopies Diagnosis of the Nitrogen Status in Crops. Heidelberg: Springer-Verlag Publishers, 1997, ( 3):3-43.
[35] 张富仓, 严富来, 范兴科, 李国栋, 刘翔, 陆军胜, 王英, 麻玮青 . 滴灌施肥水平对宁夏春玉米产量和水肥利用效率的影响. 农业工程学报, 2018,34(22):111-120.
Zhang F C, Yan F L, Fan X K, Li G D, Liu X, Liu J S, Wang Y, Ma W Q . Effects of irrigation and fertilization levels on grain yield and water-fertilizer use efficiency of drip-fertigation spring maize in Ningxia. Trans CSAE, 2018,34(22):111-120 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[13] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!