Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1850-1861.doi: 10.3724/SP.J.1006.2020.04004

• CROP GENETICS & BREEDING?GERMPLASM RESOURCES?MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea

Tong-Hong ZUO1(), He-Cui ZHANG1, Qian-Ying LIU1, Xiao-Ping LIAN2, Qin-Qin XIE1, Deng-Ke HU1, Yi-Zhong ZHANG1, Yu-Kui WANG1, Xiao-Jing BAI1, Li-Quan ZHU1,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
    2College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
  • Received:2020-01-08 Accepted:2020-07-02 Online:2020-12-12 Published:2020-09-24
  • Contact: Li-Quan ZHU E-mail:zuotongh@163.com;zhuliquan@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31572127);Chongqing Graduate Research and Innovation Project(CYS18085);Basic Scientific Research Business Expenses Project of the Central University(XDJK2017C032)

Abstract:

Glutathione-S-transferase (GSTs) plays an important role in plant resistance to stress, cytotoxic release and plant growth and development. In this study, we identified an up-regulated gene named BoGSTL21 based on the stigma transcriptome data in 0-60 min self-pollination. BoGSTL21 had an open reading frame (ORF) with the length of 900 bp, encoded a protein of 299 amino acid residues, which contained GST-N and GST-C domains without signal peptide and transmembrane domain, the theory isoelectric point of BoGSTL21 was 8.49. The promoter of BoGSTL21 gene contained many cis-acting elements such as light response, auxin response, abscisic acid response, low temperature and drought response. BoGSTL21 expresses in different tissues of Brassica oleracea. The expression level in stigma varies with developmental time, and was mainly overexpressed in mature stigma. The results of qRT-PCR revealed that BoGSTL21 mRNA expression level after self-and cross-pollinations for 0 min to 60 min was consistent with that of RNA-seq data. It was found through yeast two-hybrid that BoGSTL21 protein interacted with pollen development-related protein BoFAB1C, auxin-related protein BoPATL2, and aldolase-type TIM barrel family protein BoF9N12_9. BoGSTL21 gene was successfully induced and expressed in E. coli BL21 (DE3) with a purified protein size of 34 kD, which was consistent with the predicted results. According to the above results, BoGSTL21 may be a novel protein involved in the SI response process, which provides a new content for further research and utilization of self-incompatibility in Brasscia oleracea.

Key words: Brassica oleracea, gene cloning, self-incompatibility, expression analysis, yeast two-hybrid

Table 1

Primers used in gene cloning and qRT-PCR"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Functions
BoGSTL21-PGEX-4T-1 F: GATCTGGTTCCGCGTGGATCCATGAGTGCCGGAGTGAGAGTTAG 基因的原核表达
R: CTCGAGTCGACCCGGGAATTCGGGACGTGCTTCTGCTTGG Prokaryotic expression
qRT-PCR F: TTCCTTTGCCGATTTAGTTTGG 荧光定量PCR引物
R: AGTGTTCATCTCCTTAAGCCAA qRT-PCR
dActin F: GGCTGATGGTGAAGATATTCA 内参引物
R: CAAGCACAATACCAGTAGTAC Internal reference primers
BoGSTL21-BK F: TCAGAGGAGGACCTGCATATGAGTGCCGGAGTGAGAGTTA 酵母双杂交引物
Yeast two-hybrid primers
R: TCGACGGATCCCCGGGAATTCGGGACGTGCTTCTGCTTG
BoFAB1C-AD F: GTACCAGATTACGCTCATATGGGGATGGTGAAGTTCTCTGTG
R: ATGCCCACCCGGGTGGAATTCGTTCCATGGCTCAGGAACC
BoPATL2-AD F: GTACCAGATTACGCTCATATGGCTCAAGAAGAGATACAGAAG
R: ATGCCCACCCGGGTGGAATTCTTATGCTTGCGTTTTGAACC
BoF9N12_9-AD F: GTACCAGATTACGCTCATATGGTGGTGTCGCCAAAGATAG
R: ATGCCCACCCGGGTGGAATTCTCAGGTGATGGGTTGGGC
1391 F: GAACTGATCGTTAAAACTGC 通用引物
R: TGGTCTTCTGAGACTGTATC Universal primer
BoGSTL21-GUS F: CAAGCTTGGCTGCAGGTCGACATGTTATACGTTGCGAACGC 基因的启动子活性分析
R: GGTGGACTCCTCTTAGAATTCACTCAATCGTTCTTCTTCCGT Promoter activity analysis

Fig. 1

Analysis of expression patterns of BoGSTL21 after self-pollination and cross-pollination using stigma transcriptome data SP: self-pollination; CP: cross-pollination."

Fig. 2

Amplification product electrophoresis of BoGSTL21 cDNA and gDNA sequences in Brassica oleracea"

Fig. 3

Gene structure of Brassica oleracea BoGSTL21 and its deduced amino acid sequence The dotted box denotes the N-glycosylation site, the solid line frame denotes the GST-N domain, and the underlined line denotes the GST-C domain."

Fig. 4

Phylogenetic tree of BoGSTL21 and other species GSTL2 amino acid sequences"

Fig. 5

Alignment of BoGSTL21 of Brassica oleracea with homologous proteins of other species Black: amino acid identity 100%; Dark gray: amino acid identity 75%; White: amino acid identity 50%. The triangle marks the difference between BoGSTL21 and BoGSTL2; the underlined line denotes the GST-N terminal domain, and the underlined line denotes the GST-C terminal domain, which also indicates that the protein is highly conserved in this segment."

Table 2

Cis-elements in the upstream regulation region of BoGSTL21"

相关功能预测
Associated putative function
启动子顺式作用元件
Cis-elements in the promoter region
脱落酸(ABA)应答 Abscisic acid response ABRE
光响应 Light response G-Box, GT1-motif, TCT-motif
低氧诱导 Anaerobic induction response ARE
促进和增强基因转录 Promote and enhance gene transcription CAAT-box
赤霉素应答 Gibberellin-response GARE-motif, P-box
MYBHv1结合位点 MYBHv1 binding site CCAAT-box
涉及光响应的MYBHv1结合位点 MYB binding site involved in light response MRE
转录启动约-30的核心启动子 Core promoter element around -30 of transcription start TATA-box
低温响应 Low-temperature response LTR
干旱诱导 Drought induced response MBS
水杨酸(SA)反应 Salicylic acid response TCA-element
MeJA茉莉酸响应 MeJA-response CGTCA-motif, TGACG-motif
生长素(IAA)应答 Auxin-response TGA-element

Fig. 6

Expression analysis of BoGSTL21 in different organs"

Fig. 7

GUS staining analysis a-c: different stages of seed development; d, e: different stages of seedling development; f: different stages of leaf development; g-i: different stages of flower development; j, k: different stages of fruit pod development."

Fig. 8

Expression analysis of BoGSTL21 in stigma past pollination under bots self and cross pollination conditions SP: self-pollination; CP: cross-pollination."

Table 3

Functional annotation analysis of candidate proteins"

候选蛋白Candidate protein 蛋白名称
Protein name
功能注释
Functional annotations
BoFAB1C 1-磷脂酰肌醇-3-磷酸5-激酶
1-phosphatidylinositol-3-
phosphate 5-kinase
具有1-磷脂酰肌醇-3-磷酸5-激酶活性, ATP结合,参与磷脂酰肌醇磷酸化, 花粉发育, 气孔关闭的生物过程。
It has 1-phosphatidylinositol-3-phosphate 5-kinase activity, ATP binding, participates in the biological processes of phosphatidylinositol phosphorylation, pollen development, and stomatal closure.
BoPATL2 patellin-2 PATL属于具有高尔基动力学(GOLD)结构域和Sec14p-like结构域串联的蛋白质家族。PATL受生长素调节。
PATL belongs to a family of proteins with a Golgi dynamics (GOLD) domain and a Sec14p-like domain tandem. PATL is regulated by auxin.
BoF9N12_9 磷酸核糖3-差向异构酶
Ribulose-phosphate 3-epimerase
属于醛缩酶型TIM桶家族蛋白, 参与碳水化合物代谢过程, 磷酸戊糖途径, 氨基酸的生物合成。
Belongs to the aldolase type TIM barrel family protein, involved in carbohydrate metabolism, pentose phosphate pathway, amino acid biosynthesis.

Table 4

Interaction analysis of plasmid co-transformation yeast"

编号
No.
酵母菌种(质粒)
Yeast strain (plasmid)
培养基
Yeast medium
菌斑
Colony
颜色
Color
1 Y2HGold (pGADT7-T×pGBKT7-53) SD/-Leu/-Trp 是Yes 白色White
2 Y2HGold (pGADT7-T×pGBKT7-Lam) SD/-Leu/-Trp 是Yes 红色Red
3 Y2HGold (pGADT7-BoFAB1C×pGBKT7-BoGSTL21) SD/-Leu/-Trp 是Yes 白色White
4 Y2HGold (pGADT7-BoPATL2×pGBKT7-BoGSTL21) SD/-Leu/-Trp 是Yes 白色White
5 Y2HGold (pGADT7-BoF9N12×pGBKT7-BoGSTL21) SD/-Leu/-Trp 是Yes 白色White
6 Y2HGold (pGADT7-T×pGBKT7-53) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White
7 Y2HGold (pGADT7-T×pGBKT7-Lam) SD/-Ade/-His/-Leu/-Trp 是Yes 无色No
8 Y2HGold (pGADT7-BoFAB1C×pGBKT7-BoGSTL21) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White
9 Y2HGold (pGADT7-BoPATL2×pGBKT7-BoGSTL21) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White
10 Y2HGold (pGADT7-BoF9N12×pGBKT7-BoGSTL21) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White

Fig. 9

Interaction of BoFAB1C/BoGSTL21, BoPATL2/BoGSTL 21, and BoF9N12_9/BoGSTL21 in yeast two-hybrid assay The first to third row indicates pGADT7-BoFAB1C/BoPATL2/ BoF9N12_9×pGBDT7-BoGSTL21; the fourth row indicates positive control (pGADT7-T×pGBDT7-p53); the fifth row indicates negative control (pGADT7-T×pGBDT7-Lam). DDO: SD/-Leu/-Trp; QDO: SD/-Leu/-Trp/-His/-Ade/."

Fig. 10

Prokaryotic expression of BoGSTL21 protein M: molecular weight standard of protein; 1: BoGSTL21-pGEX- 4T-1 is an uninduced control; 2: BoGSTL21-pGEX-4T-1 is the purified fusion protein; 3: pGEX-4T-1 protein; 4: BoGSTL21- pGEX-4T-1 purified protein."

[1] Hamamura Y, Nagahara S, Higashiyama T . Double fertilization on the move. Curr Opin Plant Biol, 2012,15:70-77.
doi: 10.1016/j.pbi.2011.11.001 pmid: 22153653
[2] Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R . Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998,95:382-387.
doi: 10.1073/pnas.95.1.382 pmid: 9419384
[3] Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S-locus receptor kinase. Plant Physiol, 2003,133:919-929.
doi: 10.1104/pp.103.023846 pmid: 14555783
[4] Stone S L, Anderson E M, Mullen R T, Goring D R . ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003,15:885-898.
doi: 10.1105/tpc.009845 pmid: 12671085
[5] Nasrallah M E, Liu P, Nasrallah J B . Generation of self- incompatible Arabidopsis thaliana by transfer of two S-locus genes from A. lyrata. Science, 2002,297:247-249.
doi: 10.1126/science.1072205 pmid: 12114625
[6] Nasrallah M, Liu P, Sherman-Broyles S, Boggs N, Nasrallah J . Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc Natl Acad Sci USA, 2004,101:16070-16074.
doi: 10.1073/pnas.0406970101 pmid: 15505209
[7] Nasrallah J B, Nasrallah M E . Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell, 2014,26:3838-3841.
doi: 10.1105/tpc.114.129387
[8] Shimabukuro R H, Swanson H R, Walsh W C . Glutathione conjugation:atrazine detoxification mechanism in corn. Plant Physiol, 1970,46:103-107.
doi: 10.1104/pp.46.1.103 pmid: 16657398
[9] Dixon D P, Lapthorn A, Edwards R . Plant glutathione transferases. Methods Enzymol, 2005,401:169-186.
doi: 10.1016/S0076-6879(05)01011-6 pmid: 16399386
[10] Moons A . Osgstu3 and osgtu4,encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett, 2003,553:427-432.
doi: 10.1016/s0014-5793(03)01077-9 pmid: 14572664
[11] Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C . Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004,271:511-521.
doi: 10.1007/s00438-004-1006-8 pmid: 15069639
[12] Dixon D P, Davis B G, Edwards R . Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem, 2002,277:30859-30869.
doi: 10.1074/jbc.M202919200 pmid: 12077129
[13] Moons A . Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm, 2005,72:155-202.
doi: 10.1016/S0083-6729(05)72005-7 pmid: 16492471
[14] Marrs K . The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996,47:127-158.
doi: 10.1146/annurev.arplant.47.1.127 pmid: 15012285
[15] Edwards R, Dixon D P, Walbot V . Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000,5:193-198.
doi: 10.1016/s1360-1385(00)01601-0 pmid: 10785664
[16] Dixon D P, Cole D J, Edwards R . Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol Biol, 1999,40:997-1008.
doi: 10.1023/a:1006257305725 pmid: 10527424
[17] Sommer A, Boger P . Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pestic Biochem Physiol, 1999,63:127-138.
doi: 10.1006/pest.1999.2396
[18] 胡廷章, 周大祥, 罗凯 . 植物谷胱甘肽转移酶的结构与功能及其基因表达. 植物生理学通讯, 2007,43:195-200.
Hu T Z, Zhou D X, Luo K . Structure and biological function of glutathione transferases and their genes in plants. J Plant Physiol, 2007,43:195-200 (in Chinese with English abstract).
[19] Sari-Gorla M, Ferrario S, Rossini L, Frova C, Villa M . Developmental expression of glutathione S-transferase in maize and its possible connection with herbicide tolerance. Euphytica, 1993,67:221-230.
doi: 10.1007/BF00040624
[20] Gietz R D, Schiestl R H . Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protocols, 2007,2:1-4.
doi: 10.1038/nprot.2007.17 pmid: 17401330
[21] Zeng J, Gao Q G, Shi S M, Lian X P, Converse R, Zhang H C, Yang X H, Ren X S, Chen S, Zhu L Q . Dissecting pistil responses to incompatible and compatible pollen in self-incompatibility Brassica oleracea using comparative proteomics. Protein J, 2017,36:123-137.
doi: 10.1007/s10930-017-9697-y pmid: 28299594
[22] Grotewold E . Subcellular trafficking of phytochemicals. Recent Res Dev Plant Physiol, 2001,2:31-48.
[23] Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V . Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998,10:1135-1149.
doi: 10.1105/tpc.10.7.1135 pmid: 9668133
[24] Mueller L A, Goodman C D, Silady R A, Walbot V . AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000,123:1561-1570.
doi: 10.1104/pp.123.4.1561 pmid: 10938372
[25] Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y H, Dixon R A . MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell, 2011,23:1536-1555.
doi: 10.1105/tpc.110.080804
[26] Kitamura S, Shikazono N, Tanaka A . TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004,37:104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436
[27] Hahlbrock K, Scheel D . Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1989,40:347-369.
doi: 10.1146/annurev.pp.40.060189.002023
[28] Mo Y Y, Nagel C, Taylor L P . Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA, 1992,89:7213-7217.
doi: 10.1073/pnas.89.15.7213 pmid: 11607312
[29] Taylor L P, Grotewold E . Flavonoids as developmental regulators. Curr Opin Plant Biol, 2005,8:317-323.
doi: 10.1016/j.pbi.2005.03.005 pmid: 15860429
[30] Thieme C J, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze W X, Paz-Ares J, Scheible W R, Kragler F . Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants, 2015,1:15025.
doi: 10.1038/nplants.2015.25 pmid: 27247031
[31] Hirano T, Matsuzawa T, Takegawa K, Sato M H . Loss-of- function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol, 2011,155:797-807.
doi: 10.1104/pp.110.167981
[32] Whitley P, Hinz S, Doughty H . Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol, 2009,151:1812-1822.
doi: 10.1104/pp.109.146159 pmid: 19846542
[33] Tejos R, Rodriguez-Furlan C, Adamowski M, Sauer M, Norambuena L, Friml J . PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci, 2018, 131: jcs204198.
doi: 10.1242/jcs.204198 pmid: 28687624
[34] Chen D, Zhao J . Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Planta, 2008,134:202-215.
doi: 10.1111/ppl.2008.134.issue-1
[35] 王玉奎, 张贺翠, 白晓璟, 廉小平, 施松梅, 刘倩莹, 左同鸿, 朱利泉 . 甘蓝BoPINs家族基因的特征和表达分析. 作物学报, 2019,45:1270-1278.
doi: 10.3724/SP.J.1006.2019.84129
Wang Y K, Zhang H C, Bai X J, Lian X P, Shi S M, Liu Q Y, Zuo T H, Zhu L Q . Characteristics and expression analysis of BoPINs family genes in Brassica oleracea. Acta Agron Sin, 2019,45:1270-1278 (in Chinese with English abstract).
[36] Hasenstein K H, Zavada M S . Auxin modification of the incompatibility response in Theobroma cacao. Physiol Plant, 2001,112:113-118.
doi: 10.1034/j.1399-3054.2001.1120115.x pmid: 11319022
[37] Aloni R, Aloni E, Langhans M, Ullrich C I . Role of auxin in regulating Arabidopsis flower development. Planta, 2006,223:315-328.
doi: 10.1007/s00425-005-0088-9
[38] Tantikanjana T, Nasrallah J B . Non-cell-autonomous regulation of crucifer self-incompatibility by auxin response factor ARF3. Proc Natl Acad Sci USA, 2012,109:19468-19473.
doi: 10.1073/pnas.1217343109 pmid: 23129621
[39] Zettl R, Schell J, Palme K . Photo affinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7- 3H] indole- 3-acetic acid: Identification of a glutathione S-transferase. Proc Natl Acad Sci USA, 1994,91:689-693.
doi: 10.1073/pnas.91.2.689 pmid: 8290582
[40] 高世超, 林义章, 钟凤林, 赵瑞丽, 林琳琳, 占丽英 . 青花菜谷胱甘肽-S-转移酶基因克隆及其表达分析. 西北植物学报, 2014,34:651-657.
Gao S C, Lin Y Z, Zhong F L, Zhao R L, Lin L L, Zhan L Y . Cloning of GST and its expression in Broccoli (Brassica oleracea var. italic). Acta Bot Boreali-Occident Sin, 2014,34:651-657 (in Chinese with English abstract).
[41] Jiang J J, Jiang J X, Qiu L, Miao Y, Yao L N, Cao J S . Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome, 2012,56:39-48.
doi: 10.1139/gen-2012-0088 pmid: 23379337
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[4] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[5] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[6] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[7] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[8] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[9] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[10] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[11] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[12] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[13] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[14] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[15] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!