Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1870-1883.doi: 10.3724/SP.J.1006.2020.01009

• CROP GENETICS & BREEDING?GERMPLASM RESOURCES?MOLECULAR GENETICS • Previous Articles     Next Articles

Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99

YANG Zheng-Zhao(), WANG Zi-Hao, HU Zhao-Rong, XIN Ming-Ming, YAO Ying-Yin, PENG Hui-Ru, YOU Ming-Shan, SU Zhen-Qi*(), GUO Wei-Long*()   

  1. College of Agronomy and Biotechnology / State Key Laboratory for Agrobiotechnology / Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
  • Received:2020-01-15 Accepted:2020-06-02 Online:2020-12-12 Published:2020-11-25
  • Contact: SU Zhen-Qi,GUO Wei-Long E-mail:yangzhengzhao@cau.edu.cn;suzhenqi80@163.com;guoweilong@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100803);National Natural Science Foundation of China(31701415);Chinese Universities Scientific Fund.

Abstract:

Jimai 22 and Liangxing 99 are high-yield wheat varieties widely planted in the North Huang-Huai Rivers Valley Winter Wheat Zone and Northern Winter Wheat Zone in China, and are currently used as important parents in wheat breeding programs. Although the origins and pedigrees of Jimai 22 and Liangxing 99 are different, they are highly similar in many important agronomic traits, yield-associated traits, and so on. To identify the genomic differences between the two varieties, we performed whole-genome sequencing using the Illumina HiSeq2500 platform, with an average sequencing depth of 5.8×. We aligned the raw sequencing data against the Chinese Spring reference genome and identified the difference of copy-number variation (CNV) regions, single-nucleotide polymorphisms (SNPs) and InDels in sequence between the two varieties. Lengths of 466 Mb CNV intervals were shared by the two varieties. The lengths of cultivar-specific CNV intervals in Jimai 22 and Liangxing 99 were 91 Mb and 45 Mb, respectively, and these intervals are mainly located on chromosomes 2B and 4B. Beyond the CNV intervals, 1,547,371 SNPs and 137,817 InDels were different between the two cultivars. Based on the distribution of SNP densities in the intervals, we identified the polymorphic hotspot regions on chromosomes 1D, 2B, and 4B, making up 14.2% of the whole genome. The sequences of five previous cloned dwarf genes and spike length related genes were investigated, and two genes located in the polymorphic hotspot regions were detected with the frame shift variations. This study provides an important guidance for evaluating the genetic differences between two wheat varieties in the genomic level, and also identified both genetic similarity regions and polymorphic hotspot regions between Jimai 22 and Liangxing 99, which provided a valuable genetic information for future genetic improvement utilizing Jimai 22 and Liangxing 99 as parents.

Key words: wheat, Jimai 22, Liangxing 99, whole-genome resequencing, SNP, CNV

Supplementary Fig. 1

Density plot of bin-wise normalized average read coverage in Jimai 22 (A) and Liangxing 99 (B) X-axis, the averaged read coverage per 1 Mb after normalization. Y-axis, the distribution density. A and B represent density plot of bin-wise normalized average read coverage in Jimai 22 and Liangxing 99, respectively."

Supplementary Fig. 2

Density plot of bin-wise density of SNPs different between Jimai 22 and Liangxing 99 X-axis, 10-based logarithm of the counts of differential SNP sites per Mb. Y-axis, the distribution density."

Table 1

Primer IDs and sequences used in this study"

引物编号
Primer ID
引物序列
Primer sequence (5'-3')
退火温度
Annealing temperature (℃)
用途
Purpose
TraesCS2D02G055700_F CAGGTCGAGACAGAGAACAA 56 测序引物
Sequencing primers
TraesCS2D02G055700_R ATCGAGCCCCTCAATTTCAT 58 CNV标记特异引物
Specific primers for CNV markers
TraesCS2D02G051500_F TCAGCTCAGGGTTATCAAGC
TraesCS2D02G051500_R TTGGGTGCATTTTTCAGTCC
2B_LX99_CNV1_F AGCAGGTAATCCACACCAAA
2B_LX99_CNV1_R TGGAGAACCCACTTATCCAA
2B_LX99_CNV2_F AGCAGGTAATCCACACCAAA
2B_LX99_CNV2_R AATCCACACCAAATCCCCAT
2B_COM_CNV_F CACCCTAGATACAACCGAGG
2B_COM_CNV_R ATGTCACCGATCTTCTGAGC
2D_COM_CNV_F ATGATCACGATGGACCTAGC
2D_COM_CNV_R TGCCACGAAGATTTAGAGGA

Fig. 1

Morphological comparison between Jimai 22 and Liangxing 99 A: plant height and internode length comparison between Jimai 22 (left) and Liangxing 99 (right); B: grain morphological comparison between Jimai 22 (top) and Liangxing 99 (bottom)."

Table 2

Statistical analysis of the main agronomic traits for Jimai 22 and Liangxing 99"

表型
Phenotype
济麦22
Jimai 22
良星99
Liangxing 99
差异显著性
Statistical significance of the difference
均值±标准误差
Mean ± SE
样本量
Sample counts
均值±标准误差
Mean ± SE
样本量
Sample counts
P-value
(t-test)
旗叶长Flag leaf length (cm) 16.78±0.36 30 16.94±0.40 30 0.76
旗叶宽Flag leaf width (cm) 1.88±0.024 30 1.85±0.039 30 0.53
每穗小穗数Spikelet number per spike 21.87±0.45 30 21.80±0.28 30 0.91
每穗可育小穗数Fertile spikelet per spike 21.23±0.50 30 21.17±0.14 30 1.00
每穗不育小穗数Infertile spikelet per spike 0.63±0.14 30 0.63±0.23 30 0.90
穗长Spike length (cm) 9.57±0.13 30 10.43±0.15 30 3.98E-5 **
株高Plant length (cm) 75.05±0.57 30 80.23±0.75 30 1.90E-6 **
穗粒数Grain number per spike 52.23±0.73 30 55.20±0.35 30 0.31
千粒重Thousand seed weight (g) 49.20±0.33 6 48.30±0.03 6 0.66
粒长Grain length (cm) 6.43±0.07 6 6.53±0.03 6 0.39
粒宽Grain width (cm) 3.25±0.06 6 3.30±0.02 6 0.58

Table 3

Summary of homozygous SNPs in Jimai 22 and Liangxing 99"

基因组
Genome
济麦22中的纯合
SNP个数
Number of homozygous SNPs in Jimai 22
良星99中的纯合
SNP个数
Number of homozygous SNPs in Liangxing 99
两者基因型相同的纯合SNP个数
Number of homozygous SNPs with the same genotype
两者基因型不同的纯合
SNP个数
Number of homozygous SNPs with different genotypes
A 6,405,063 6,395,080 6,194,047 301,206
B 8,033,789 7,781,369 7,248,448 1,148,764
D 887,462 883,555 818,951 97,401
全基因组 Whole genome 15,326,314 15,060,004 14,261,446 1,547,371

Table 4

Summary of InDels in Jimai 22 and Liangxing 99"

基因组
Genome
济麦22中的纯合
InDel个数
Number of homozygous InDels in Jimai 22
良星99中的纯合
InDel个数
Number of homozygous InDels in Liangxing 99
两者基因型相同的纯合InDel个数
Number of homozygous InDels with the same genotype
两者基因型不同的纯合
InDel个数
Number of homozygous InDels with different genotypes
A 464,369 459,599 438,410 28,732
B 562,658 543,395 492,112 95,316
D 116,485 115,570 104,345 13,769
全基因组Whole genome 1,143,512 1,118,564 1,034,867 137,817

Table 5

Summary for the CNV regions identified in Jimai 22 and Liangxing 99"

基因组
Genome
济麦22的特有CNV区间
Specific CNV region in
Jimai 22
良星99的特有CNV区间
Specific CNV region in
Liangxing 99
两品种的共有CNV区间
Common CNV regions in the
two cultivars
长度
Length (Mb)
% 长度
Length (Mb)
% 长度
Length (Mb)
%
A 8 0.06 4 0.03 135 0.96
B 80 0.57 33 0.23 226 1.61
D 3 0.02 8 0.06 105 0.75
全基因组Whole genome 91 0.65 45 0.32 466 3.31

Fig. 2

Distribution of CNV regions detected in Jimai 22 and Liangxing 99 compared to the Chinese Spring reference genome Green: specific CNV regions in Jimai 22; Pink: specific CNV regions in Liangxing 99; Purple: common CNV regions in the two varieties."

Fig. 3

PCR validation of detected CNVs in Jimai 22 (JM22), Liangxing 99 (LX99) and Chinese Spring (CS) 2D_COM_CNV and 2B_COM_CNV were designed utilizing sequences in common CNV regions in 2D and 2B chromosomes, respectively; 2B_LX99_CNV1 and 2B_ LX99_CNV2 were designed utilizing sequences in Liangxing 99-specific CNV regions in chromosome 2B. The corresponding three lanes from left to right for each primer are Liangxing 99 (LX99), Jimai 22 (JM 22) and Chinese Spring (CS)."

Fig. 4

GO enrichment analysis of the genes in Jimai 22 (A) and Liangxing 99 (B) specified CNV regions"

Fig. 5

Statistics and distribution of the SNP hotspot regions between Jimai 22 and Liangxing 99 A: pie chart for the proportions of differential SNPs in the polymorphism hotspot regions (PHRs) and the genetic similar regions (GSRs); B: pie chart for the proportions of the PHRs and GSRs in length; C: distributions of the PHRs and the GSRs across chromosomes."

Fig. 6

GO enrichment result of the genes in the SNP hotspot regions between in Jimai 22 and Liangxing 99"

Fig. 7

Length distributions of homozygous InDels (A) and mutation types of homozygous SNPs (B) in the polymorphism hotspot regions and genetic similar regions between Jimai 22 and Liangxing 99 Dark blue: polymorphism hotspot regions; Light blue: genetic similar regions."

Table 6

Summary of the mutation types of the differential homozygous SNPs in Jimai 22 and Liangxing 99"

SNP突变类型
Types of SNP
mutations
多态性热点区间
Differential genetic region
相似区间
Similar genetic region
全基因组
Whole genome region
数量
Counts
每Mb密度
Density per Mb
数量
Counts
每Mb密度
Density per Mb
数量
Counts
每Mb密度
Density per Mb
T>A 33,545 17.52 1701 0.15 35,246 2.62
A>T 33,868 17.69 1713 0.15 35,581 2.64
G>C 49,065 25.62 2020 0.17 51,085 3.79
C>G 49,521 25.86 1956 0.17 51,477 3.82
A>C 47,712 24.91 2089 0.18 49,801 3.70
T>G 47,862 24.99 1888 0.16 49,750 3.69
G>T 65,670 34.29 3204 0.28 68,874 5.11
C>A 66,047 34.49 3226 0.28 69,273 5.14
A>G 200,697 104.80 6364 0.55 207,061 15.37
T>C 201,236 105.08 6540 0.57 207,776 15.42
G>A 289,933 151.40 11,276 0.98 301,209 22.36
C>T 290,292 151.59 11,151 0.96 301,443 22.38
转换Transition 982,158 512.88 35,331 3.06 1,017,489 75.53
颠换Transversion 393,290 205.37 17,797 1.54 411,087 30.51
全部Total 1,375,448 718.25 53,128 4.60 1,428,576 106.04

Table 7

Length distribution of differential homozygous InDels in Jimai 22 and Liangxing 99"

InDel类型
Types of InDel
InDel长度
Length of InDel
差异区间
Differential genetic region
相似区间
Similar genetic region
全基因组
Whole genome region
数量
Count
每Mb密度
Density per Mb
数量
Count
每Mb密度
Density per Mb
数量
Count
每Mb密度
Density per Mb
在济麦22中插入, 在良星99中丢失
Insertion in Jimai 22, deletion in Liangxing 99
1 34,031 17.77 7723 0.67 41,754 3.10
2 7259 3.79 3017 0.26 10,276 0.76
3 2664 1.39 1242 0.11 3906 0.29
4 1685 0.88 843 0.07 2528 0.19
5 701 0.37 419 0.04 1120 0.08
6 883 0.46 370 0.03 1253 0.09
7 453 0.24 225 0.02 678 0.05
8 476 0.25 216 0.02 692 0.05
9 363 0.19 153 0.01 516 0.04
≥10 4131 2.16 1599 0.14 5730 0.43
全部Total 52,646 27.49 15,807 1.37 68,453 5.08
在良星99中插入, 在济麦22中丢失
Insertion in Liangxing 99, deletion in Jimai 22
1 34,083 17.80 7796 0.67 41,879 3.11
2 7315 3.82 3037 0.26 10,352 0.77
3 2690 1.40 1190 0.10 3880 0.29
4 1710 0.89 785 0.07 2495 0.19
5 746 0.39 420 0.04 1166 0.09
6 832 0.43 356 0.03 1188 0.09
7 412 0.22 227 0.02 639 0.05
8 509 0.27 208 0.02 717 0.05
9 402 0.21 183 0.02 585 0.04
≥10 3993 2.09 1637 0.14 5630 0.42
全部Total 52,696 27.52 15,835 1.37 68,531 5.09

Table 8

Statistics of the effects on protein coding of homozygous point mutations between Jimai 22 and Liangxing 99"

变异所在区间
Region of variations
错义突变
Missense mutation
同义突变
Synonymous mutation
移码突变
Frame-shift mutation
提前终止突变
Stop-gained mutation
终止子丢失突变
Stop-lost mutation
数量
Count
% 数量
Count
% 数量
Count
% 数量
Count
% 数量
Count
%
差异区间Different region 2981 51.3 2431 41.9 304 5.2 68 1.2 16 0.3
相似区间Similar region 348 44.7 330 42.4 94 12.1 6 0.8 0 0
全部Total 3329 50.6 2761 42.0 398 6.1 74 1.1 16 0.2

Table 9

List of dwarf genes and their distributions in genetic similar regions and polymorphism hotspot regions"

株高基因/QTL
Plant height gene/QTL
基因编号
Gene ID
染色体
Chromosome
区间
Region
基因功能注释
Function annotation
序列差异类型
Variation type
Rht-B1 TraesCS4B02G043100 4B 多态性热点区间
Polymorphic hotspot regions
编码DELLA蛋白
DELLA protein-coding gene

None
Rht-D1 TraesCS4D02G040400 4D 相似区间
Genetic similar region
编码DELLA蛋白
DELLA protein-coding gene

None
Ppd-D1 TraesCS2D02G079600 2D 相似区间
Genetic similar region
编码PRRs蛋白
PRRs protein-coding gene

None
QPht/Sl.cau-2D.1 TraesCS2D02G051500 2D 多态性热点区间
Polymorphic hotspot regions
编码WRKY转录因子
WRKY transcription factor protein-coding gene
InDel
QPht/Sl.cau-2D.1 TraesCS2D02G055700 2D 多态性热点区间
Polymorphic hotspot regions
编码GRAS转录因子
GRAS transcription factor protein-coding gene
InDel, SNP

Fig. 8

Sequence of TraesCS2D02G051500 (A) and TraesCS 2D02G055700 (B) near the coding-function affected sites in Chinese Spring, Jimai 22, and Liangxing 99"

[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭 . 中国小麦产业发展与科技进步. 农学学报, 2018,8(1):99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X . Wheat production and technology improvement in China. J Agric, 2018,8(1):99-106 (in Chinese).
[2] 张婷, 逯腊虎, 张伟, 杨斌, 袁凯, 史晓芳 . 黄淮麦区300个小麦种质的主要农艺性状比较. 小麦研究, 2018,39(1):13-20.
Zhang T, Lu L H, Zhang W, Yang B, Yuan K, Shi X F . Comparison of main agronomic traits of 300 wheat germplasms in Huanghuai Wheat Region. J Wheat Res, 2018,39(1):13-20 (in Chinese).
[3] 曹廷杰, 王西成, 赵虹 . 国审小麦新品种周麦18号丰产性、稳产性及适应性分析. 中国农业科技导报, 2007,9(1):39-41.
Cao T J, Wang X C, Zhao H . Analysis on the yield potential, stability and adaptability of national authorized wheat variety Zhoumai 18. Rev China Agric Sci Technol, 2007,9(1):39-41 (in Chinese with English abstract)
[4] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇 . 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012,38:954-961.
doi: 10.3724/SP.J.1006.2012.00954
Gai H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y . Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong province. Acta Agron Sin, 2012,38:954-961 (in Chinese with English abstract)
[5] 傅晓艺, 郭进考, 刘艳滨, 史占良, 单子龙, 韩然, 何明琦 . 利用石4185为骨干亲本培育高产小麦新品种. 种子, 2017,36(12):95-99.
Fu X Y, Guo J K, Liu Y B, Shi Z L, Shan Z L, Han R, He M Q . New wheat varieties with high yield of core parent breeding by using Shi 4185. Seed, 2017,36(12):95-99 (in Chinese).
[6] 凌宏清 . 小麦及其近缘种基因组测序研究进展与发展趋势. 麦类作物学报, 2016,36:397-403.
Ling H Q . Progress and perspectives of the genome sequencing in wheat and its relatives. J Triticeae Crops, 2016,36:397-403 (in Chinese with English abstract)
[7] Uauy C . Wheat genomics comes of age. Curr Opin Plant Biol, 2017,36:142-148.
doi: 10.1016/j.pbi.2017.01.007 pmid: 28346895
[8] 殷贵鸿, 李根英, 何中虎, 刘建军, 王辉, 夏先春 . 小麦新品种济麦22抗白粉病基因的分子标记定位. 作物学报, 2009,35:1425-1431.
doi: 10.3724/SP.J.1006.2009.01425
Yin H G, Li G Y, He Z H, Liu J J, Wang H, Xia X C . Molecular mapping of powdery mildew resistance gene in wheat cultivar Jimai 22. Acta Agron Sin, 2009,35:1425-1431 (in Chinese with English abstract)
[9] 赵广军, 张英肖 . 高产稳产冬小麦品种良星99栽培技术. 小麦研究, 2006,27(3):12-13.
Zhao G J, Zhang Y X . Cultivation technique of Liangxing 99, a winter wheat variety with high and stable yield. J Wheat Res, 2006,27(3):12-13 (in Chinese)
[10] Qu Y F, Wu P P, Hu J H, Chen Y X, Shi Z L, Qiu D, Li Y H, Zhang H J, Zhou Y, Yang L, Liu H W, Zhu T Q, Liu Z Y, Zhang Y M, Li H J . Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26. J Integr Agric, 2020,19:931-940.
doi: 10.1016/S2095-3119(19)62644-4
[11] Bolger A M, Lohse M, Usadel B . Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014,30:2114-2120.
doi: 10.1093/bioinformatics/btu170
[12] Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[13] Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak C J, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe A G, Pozniak C, Ronen G, Stein N, Barad O, Baruch K, Choulet F, Keeble-Gagnere G, Mascher M, Sharpe A G, Ben-Zvi G, Josselin A A, Stein N, Mascher M, Himmelbach A, Choulet F, Keeble-Gagnere G, Mascher M, Rogers J, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Josselin A A, Koh C, Muehlbauer G, Pasam R K, Paux E, Pozniak C J, Rigault P, Sharpe A G, Tibbits J, Tiwari V, Choulet F, Keeble-Gagnere G, Mascher M, Josselin A A, Rogers J, Spannagl M, Choulet F, Lang D, Gundlach H, Haberer G, Keeble-Gagnere G, Mayer KFX, Ormanbekova D, Paux E, Prade V, Simkova H, Wicker T, Choulet F, Spannagl M, Swarbreck D, Rimbert H, Felder M, Guilhot N, Gundlach H, Haberer G, Kaithakottil G, Keilwagen J, Lang D, Leroy P, Lux T, Mayer KFX, Twardziok S, Venturini L, Appels R, Rimbert H, Choulet F, Juhasz A, Keeble-Gagnere G, Choulet F, Spannagl M, Lang D, Abrouk M, Haberer G, Keeble-Gagnere G, Mayer KFX, Wicker T, Choulet F, Wicker T, Gundlach H, Lang D, Spannagl M, Lang D, Spannagl M, Appels R, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez R H, Appels R, Arnaud D, Chalabi S, Chalhoub B, Choulet F, Cory A, Datla R, Davey M W, Hayden M, Jacobs J, Lang D, Robinson S J, Spannagl M, Steuernagel B, Tibbits J, Tiwari V, van Ex F, Wulff BBH, Pozniak C J, Robinson S J, Sharpe A G, Cory A, Benhamed M, Paux E, Bendahmane A, Concia L, Latrasse D, Rogers J, Jacobs J, Alaux M, Appels R, Bartos J, Bellec A, Berges H, Dolezel J, Feuillet C, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O A, Simkova H, Singh K, Valarik M, van der Vossen E, Vautrin S, Weining S, Korol A, Frenkel Z, Fahima T, Glikson V, Raats D, Rogers J, Tiwari V, Gill B, Paux E, Poland J, Dolezel J, Cihalikova J, Simkova H, Toegelova H, Vrana J, Sourdille P, Darrier B, Appels R, Spannagl M, Lang D, Fischer I, Ormanbekova D, Prade V, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Steuernagel B, Jones J D G, Witek K, Wulff B B H, Yu G, Small I, Melonek J, Zhou R, Juhasz A, Belova T, Appels R, Olsen O A, Kanyuka K, King R, Nilsen K, Walkowiak S, Pozniak C J, Cuthbert R, Datla R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Dolezel J, Cizkova J, Tibbits J, Budak H, Akpinar B A, Biyiklioglu S, Muehlbauer G, Poland J, Gao L, Gutierrez-Gonzalez J, N'Daiye A, Dolezel J, Simkova H, Cihalikova J, Kubalakova M, Safar J, Vrana J, Berges H, Bellec A, Vautrin S, Alaux M, Alfama F, Adam-Blondon A F, Flores R, Guerche C, Letellier T, Loaec M, Quesneville H, Pozniak C J, Sharpe A G, Walkowiak S, Budak H, Condie J, Ens J, Koh C, Maclachlan R, Tan Y, Wicker T, Choulet F, Paux E, Alberti A, Aury J M, Balfourier F, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Gill B, Kaur G, Luo M, Sehgal S, Singh K, Chhuneja P, Gupta O P, Jindal S, Kaur P, Malik P, Sharma P, Yadav B, Singh N K, Khurana J, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar R S, Rogers J, Jacobs J, Alaux M, Bellec A, Berges H, Dolezel J, Feuillet C, Frenkel Z, Gill B, Korol A, van der Vossen E, Vautrin S, Gill B, Kaur G, Luo M, Sehgal S, Bartos J, Holusova K, Plihal O, Clark M D, Heavens D, Kettleborough G, Wright J, Valarik M, Abrouk M, Balcarkova B, Holusova K, Hu Y, Luo M, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J, Appels R, Hayden M, Keeble-Gagnere G, Rigault P, Tibbits J, Olsen O A, Belova T, Cattonaro F, Jiumeng M, Kugler K, Mayer K F X, Pfeifer M, Sandve S, Xun X, Zhan B, Simkova H, Abrouk M, Batley J, Bayer P E, Edwards D, Hayashi S, Toegelova H, Tulpova Z, Visendi P, Weining S, Cui L, Du X, Feng K, Nie X, Tong W, Wang L, Borrill P, Gundlach H, Galvez S, Kaithakottil G, Lang D, Lux T, Mascher M, Ormanbekova D, Prade V, Ramirez-Gonzalez R H, Spannagl M, Stein N, Uauy C, Venturini L, Stein N, Appels R, Eversole K, Rogers J, Borrill P, Cattivelli L, Choulet F, Hernandez P, Kanyuka K, Lang D, Mascher M, Nilsen K, Paux E, Pozniak C J, Ramirez-Gonzalez R H, Simkova H, Small I, Spannagl M, Swarbreck D, Uauy C . Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
doi: 10.1126/science.aav0887 pmid: 30262485
[14] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R . The sequence alignment/map format and SAMtools. Bioinformatics, 2009,25:2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[15] van der Auwera G A, Carneiro M O, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K V, Altshuler D, Gabriel S, Depristo M A . From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr Protoc Bioinform, 2013,43:10-11.
[16] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 2014,6:80-92.
doi: 10.4161/fly.19695 pmid: 22728672
[17] Quinlan A R, Hall I M . BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010,26:841-842.
doi: 10.1093/bioinformatics/btq033 pmid: 20110278
[18] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P . ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999,400:256-261.
doi: 10.1038/22307 pmid: 10421366
[19] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A . A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theor Appl Genet, 2007,115:721-733.
doi: 10.1007/s00122-007-0603-4
[20] 柴岭岭 . 普通小麦2D染色体株高和穗长QTL的精细定位与图位克隆. 中国农业大学博士学位论文, 北京, 2019. pp 38-39.
Chai L L . Fine Mapping and Map-based Cloning of QTL Controlling Plant Height and Spike Length on Chromosome 2D in Common Wheat (Triticum aestivum L.). PhD Dissertation of China Agricultural University, Beijing, China, 2019. pp 38-39 (in Chinese with English abstract).
[21] Chai L L, Chen Z Y, Bian R L, Zhai H J, Cheng X J, Peng H R, Yao Y Y, Hu Z R, Xin M M, Guo W L, Sun Q X, Zhao A J, Ni Z F . Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat ( Triticum aestivum L.). Theor Appl Genet, 2018,131:2621-2637.
doi: 10.1007/s00122-018-3177-4 pmid: 30267114
[22] Zhao Z H, Sun H G, Song W, Lu M, Huang J, Wu L F, Wang X M, Li H J . Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet, 2013,126:3081-3089.
doi: 10.1007/s00122-013-2194-6 pmid: 24061485
[23] 邹景伟, 邱丹, 孙艳玲, 郑超星, 李静婷, 吴培培, 武小菲, 王晓鸣, 周阳, 李洪杰 . Pm52——小麦品种良星99抗白粉病基因的有效性. 作物学报, 2017,43:332-342.
doi: 10.3724/SP.J.1006.2017.00332
Zou J W, Qiu D, Sun Y L, Zheng C X, Li J T, Wu P P, Wu X F, Wang X M, Zhou Y, Li H J . Pm52: effectiveness of the gene conferring resistance to powdery mildew in wheat cultivar Liangxing 99. Acta Agron Sin, 2017,43:332-342 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00332
[24] Wu P P, Hu J H, Zou J W, Qiu D, Qu Y F, Li Y H, Li T, Zhang H J, Yang L, Liu H W, Zhou Y, Zhang Z J, Li J T, Liu Z Y, Li H J . Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theor Appl Genet, 2019,132:1451-1461.
doi: 10.1007/s00122-019-03291-7 pmid: 30719526
[25] Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q, Bai Z, Dong X, Chen H, Sun M, Zhai S, Sun Y, Yu L, Lan L, Xiao J, Fang X, Lei H, Zhang Z, Zhao W . GSA: genome sequence archive. Genom Proteom Bioinf, 2017,15:14-18.
doi: 10.1016/j.gpb.2017.01.001
[26] National genomics data center members and partners. Nucleic Acids Res, 2020,48:D24-D33.
doi: 10.1093/nar/gkz913 pmid: 31702008
[27] Wang W X, Wang Z H, Li X T, Ni Z F, Hu Z R, Xin M M, Peng H R, Yao Y Y, Sun Q X, Guo W L . SnpHub: an easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. GigaScience, 2020, 9:giaa060.
doi: 10.1093/gigascience/giaa060 pmid: 32501478
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[5] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[6] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[7] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[8] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[9] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[12] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[13] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[14] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[15] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!