Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (4): 532-543.doi: 10.3724/SP.J.1006.2020.93040
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIANG Si-Wei1,JIANG Hao-Liang1,ZHAI Li-Hong2,WAN Xiao-Rong1,LI Xiao-Qin1,JIANG Feng1,*(),SUN Wei1,*()
[1] | Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K . Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006,45:523-539. |
[2] | Yamaguchi-Shinozaki K, Shinozaki K . Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006,57:781-803. |
[3] | Zhu J K . Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002,53:247-273. |
[4] | Kim S, Kang J Y, Cho D I, Park J H, Kim S Y . ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004,40:75-87. |
[5] | Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K . Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007,143:1739-1751. |
[6] | Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q . OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol, 2011,76:145-156. |
[7] | Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z . The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J, 2016,85:16-29. |
[8] | Gong S, Ding Y, Hu S, Ding L, Chen Z, Zhu C . The role of HD-Zip class I transcription factors in plant response to abiotic stresses. Physiol Plant, 2019, doi: 10.1111/ppl.12965. |
[9] | Mukherjee K, Brocchieri L, Burglin T R . A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009,26:2775-2794. |
[10] | Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam R J, Engstrom P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L, Meijer A H, Ouwerkerk P B . A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008,66:87-103. |
[11] | Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M . Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010,22:2171-2183. |
[12] | Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D . A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J, 2008,55:301-310. |
[13] | Johannesson H, Wang Y, Hanson J, Engstrom P . The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol, 2003,51:719-729. |
[14] | Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L . Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006,48:125-137. |
[15] | Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q . Genome-wide identification and characterization of HD-ZIP genes in potato. Gene, 2019,697:103-117. |
[16] | Li Y, Xiong H, Cuo D, Wu X, Duan R . Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley ( Hordeum vulgare L.). Plant Physiol Biochem, 2019,141:250-258. |
[17] | Yue H, Shu D, Wang M, Xing G, Zhan H, Du X, Song W, Nie X . Genome-wide identification and expression analysis of the HD-Zip gene family in wheat (Triticum aestivum L.). Genes(Basel), 2018,9(2), doi: 10.3390/genes9020070. |
[18] | Ariel F D, Manavella P A, Dezar C A, Chan R L . The true story of the HD-Zip family. Trends Plant Sci, 2007, 12:419-426. |
[19] | Henriksson E, Olsson A S, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E . Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol, 2005,139:509-518. |
[20] | Romani F, Ribone P A, Capella M, Miguel V N, Chan R L . A matter of quantity: common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors. Plant Sci, 2016,251:139-154. |
[21] | Perotti M F, Ribone P A, Chan R L . Plant transcription factors from the homeodomain-leucine zipper family: I. Role in development and stress responses. IUBMB Life, 2017,69:280-289. |
[22] | Hu J, Chen G, Yin W, Cui B, Yu X, Lu Y, Hu Z . Silencing of SlHB2 improves drought, salt stress tolerance, and induces stress-related gene expression in tomato. J Plant Growth Regul, 2017,36:578-589. |
[23] | Ni Y, Wang X, Li D, Wu Y, Xu W, Li X . Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophys Sin(Shanghai), 2008,40:78-84. |
[24] | Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B . Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012,80:571-585. |
[25] | Dezar C A, Gago G M, Gonzalez D H, Chan R L . Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res, 2005,14:429-440. |
[26] | Cabello J V, Giacomelli J I, Gomez M C, Chan R L . The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. J Biotechnol, 2017,257:35-46. |
[27] | Cabello J V, Arce A L, Chan R L . The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012,69:141-153. |
[28] | Capella M, Ribone P A, Arce A L, Chan R L . Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol, 2015,207:669-682. |
[29] | Parveen S, Pandey A, Jameel N, Chakraborty S, Chakraborty N . Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response. J Plant Physiol, 2018,222:9-16. |
[30] | Ebrahimian-Motlagh S, Ribone P A, Thirumalaikumar V P, Allu A D, Chan R L, Mueller-Roeber B, Balazadeh S . JUNGBRUNNEN1 confers drought tolerance downstream of the HD-Zip I transcription factor AtHB13. Front Plant Sci, 2017,8:2118. |
[31] | Dai M, Hu Y, Ma Q, Zhao Y, Zhou D X . Functional analysis of rice HOMEOBOX4(Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol, 2008, 66:289-301. |
[32] | Zhou W, Malabanan P B, Abrigo E . OsHox4 regulates GA signaling by interacting with DELLA-like genes and GA oxidase genes in rice. Euphytica, 2015,201:97-107. |
[33] | Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B . A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014,55:1142-1156. |
[34] | Wu J, Zhou W, Gong X, Cheng B . Expression of ZmHDZ4, a maize homeodomain-Leucine Zipper I gene, confers tolerance to drought stress in transgenic rice. Plant Mol Biol Rep, 2016,34:845-853. |
[35] | Guo A Y, Zhu Q H, Chen X, Luo J C . GSDS: gene structure display server. Hereditas(Beijing), 2007,29:1023-1026. |
[36] | Letunic I, Doerks T, Bork Bork P . SMART: recent updates, new developments and status in 2015, Nucleic Acids Res, 2015, 43(Database issue):D257-D260. |
[37] | Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G . Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948. |
[38] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S . MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739. |
[39] | Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25:402-408. |
[40] | Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla J M, Tarancon C, Immink R G, Cubas P . Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci USA, 2017,114:E245-E254. |
[41] | Shao J, Haider I, Xiong L, Zhu X, Hussain R M F, Overnas E, Meijer A H, Zhang G, Wang M, Bouwmeester H J, Ouwerkerk P B F . Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One, 2018,13:e0199248. |
[42] | Olsson A S, Engstrom P, Soderman E . The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004,55:663-677. |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[5] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[6] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[7] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[8] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[9] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[10] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[11] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[12] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[13] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[14] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[15] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
|