Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (4): 520-531.doi: 10.3724/SP.J.1006.2020.94101

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Developing the key germplasm of Chinese peanut landraces based on phenotypic traits

YAN Cai-Xia1,WANG Juan1,ZHANG Hao1,LI Chun-Juan1,SONG Xiu-Xia2,SUN Quan-Xi1,YUAN Cui-Ling1,ZHAO Xiao-Bo1,SHAN Shi-Hua1,*()   

  1. 1 Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2 Agricultural and Rural Bureau of Mudan District, Heze 274000, Shandong, China
  • Received:2019-07-17 Accepted:2019-12-26 Online:2020-04-12 Published:2020-01-17
  • Contact: Shi-Hua SHAN E-mail:shansh1971@163.com
  • Supported by:
    This study was supported by the Taishan Scholars Project(ts201712080);the Central Guidance for Local Science and Technology, the Outstanding Talents and Innovation Team in Agricultural Research(13190194);the Qingdao Science and Technology Plan for the Public Benefit(17-3-3-49-nsh);the Fine Breeding Project of Shandong Province(2017LZN033);the Fine Breeding Project of Shandong Province(2017LZGC003);the Shandong Agriculture Research System(SDAIT-04-02);the Agricultural Science and Technological Innovation Project of Shandong Academy of Agricultural Science(CXGC2016A01)

Abstract:

Chinese peanut landraces are important parent resources in peanut breeding due to their abundant genetic diversity. In this study, a total of 2741 original accessions from peanut seed bank were divided into 26 groups based on their botanical variety and ecological distribution. The key accessions were established based on the analysis of 13 phenotypic traits by the square root strategy, UPGMA clustering within groups and random sampling in individual clusters, and evaluated by t-test, F-test, Chi-squared test, ranging, the ratio of phenotypic retention, and phenotypic correlation analyses. Finally, the principal components analysis (PCA) and the histogram analysis were used to re-confirm the key germplasm. The total of 259 as a key germplasm was selected, accounting for 9.4% of total accessions, which included 14 of var. fastigiata, 85 of var. vulgaris, 42 of var. hirsuta, 103 of var. hypogaea and 15 of irregular type. There were no significant differences (P < 0.05) in means, variance, coefficient of variation, and Shannon-weaver diversity index for 13 phenotypic traits between key germplasm and entire collection. The key germplasm preserved the distribution range, the ratio of phenotypic retention and the phenotypic correlation of primary collection, with similar composition of botanical variety and ecological distribution. PCA and the histogram confirmed the homogeneity of genetic structure and distribution frequency between two collections. Thus, this key germplasm can represent the genetic variability and population structure of entire collection, and enhance innovation of peanut genetic resources and exploitation of elite alleles.

Key words: peanut, landrace, phenotypic traits, key germplasm, representative evaluation

Table1

Quantified value of four qualitative traits in peanut"

性状Trait 赋值Quantified value
株型
Plant type
直立 = 1, 半蔓 = 3, 匍匐 = 5
Erect = 1, Semi-spreading = 3, Spreading = 5
开花习性
Flowering habit
交替 = 1, 连续 = 3
Alternate flowering = 1, Continuous flowering = 3
分枝型
Branching pattern
密枝 = 1, 疏枝 = 3
Dense branch = 1, Sparse branch = 3
植物学类型
Botanical variety
多粒型 = 1, 珍珠豆型 = 2, 龙生型 = 3, 普通型 = 4, 中间型 = 5
var. fastigiata = 1, var. vulgaris = 2, var. hirsute = 3, var. hypogaea = 4, Irregular type = 5

Table 2

Composition of botanical variety, ecological distribution, and Chi-square test in the entire collection and key germplasm"

组成/分布
Composition/distribution
全部种质
Entire collection
骨干种质
Key germplasm
植物学类型 多粒型 var. fastigiata 70 (2.6%) 14 (5.41%)
Botanical variety 珍珠豆型 var. vulgaris 1078 (39.3%) 85 (32.8%)
龙生型 var. hirsuta 321 (11.7%) 42 (16.2%)
普通型 var. hypogaea 1140 (41.6%) 103 (39.8%)
中间型 Irregular type 132 (4.8%) 15 (5.8%)
χ2 1.600
PP-value 0.809
种植区划 黄河流域花生区 Yellow River basin 870 (31.7%) 75 (29.0%)
Planting zoning 长江流域花生区 Yangtze River basin 726 (26.5%) 75 (29.0%)
东南沿海花生区 The Southeast coast 900 (32.8%) 63 (24.3%)
云贵高原花生区 Yungui Plateau 74 (2.7%) 16 (6.2%)
黄土高原花生区 The Loess Plateau 76 (2.8%) 13 (5.0%)
东北花生区 The Northeast China 93 (3.4%) 15 (5.8%)
西北花生区 The Northwest China 2 (0.1%) 2 (0.8%)
χ2 5.232
PP-value 0.514

Table 3

Comparison of means and variances for thirteen traits in the entire collection and key germplasm"

性状
Trait
平均值 Mean 方差 Variance
全部种质
Entire
collection
骨干种质
Key
germplasm
显著性
Significance
全部种质
Entire
collection
骨干种质
Key
germplasm
F-值
F-value
P
P-value
植物学类型 Botanical variety 3.068 3.077 NS 1.100 1.172 0.019 0.891
株型 Plant type 2.315 2.413 NS 3.177 3.313 0.710 0.400
开花习性 Flowering habit 1.941 1.919 NS 0.998 0.997 0.122 0.727
分枝型 Branching pattern 0.913 0.425 NS 1.297 0.873 1.509 0.219
生育期 Growth period 139.610 138.750 NS 250.093 254.771 0.697 0.404
株高 Plant height 44.074 42.376 NS 328.256 311.667 1.293 0.256
百果重 100-pod weight 158.906 159.467 NS 2244.396 2536.806 0.032 0.857
百仁重 100-seed weight 64.015 63.452 NS 372.911 415.674 0.196 0.658
出仁率 Shelling percentage 72.477 71.890 NS 17.460 24.461 4.352 0.037
粗蛋白含量 Protein content 27.987 27.536 NS 11.531 15.519 3.604 0.058
粗脂肪含量 Oil content 50.120 49.950 NS 10.426 16.950 0.585 0.444
油酸含量 Oleic acid content 46.400 46.370 NS 40.424 44.819 0.047 0.829
亚油酸含量 Linoleic acid content 33.801 33.942 NS 30.800 32.812 0.123 0.725

Table 4

Comparison of range, coefficient of variation, and H′ for thirteen traits in the entire collection and key germplasm"

性状
Trait
极差 Range 变异系数 CV (%) 香农多样性指数 H
全部种质
Entire
collection
骨干种质
Key
germplasm
全部种质
Entire
collection
骨干种质
Key
germplasm
全部种质
Entire
collection
骨干种质
Key
germplasm
植物学类型 Botanical variety 1-5 1-5 34.18 35.19 1.22 1.33
株型 Plant type 1-5 1-5 76.97 75.43 0.87 0.90
开花习性 Flowering habit 1-3 1-3 51.43 52.04 0.69 0.69
分枝型 Branching pattern 1-3 1-3 54.54 51.34 0.67 0.69
生育期 Growth period 100-180 100-180 11.33 11.50 1.88 1.94
株高 Plant height 7.9-95.0 7.9-93.8 34.18 41.66 2.07 2.05
百果重 100-pod weight 45.2-356.0 52.0-324.3 29.81 31.58 2.02 2.05
百仁重 100-seed weight 25.0-190.1 25.0-131.2 30.17 32.13 1.84 1.90
出仁率 Shelling percentage 50.37-95.2 51.3-85.9 5.77 6.88 1.98 2.08
粗蛋白含量 Protein content 13.7-52.7 13.7-48.7 12.13 14.31 1.96 2.01
粗脂肪含量 Oil content 22.1-61.2 24.8-60.6 6.44 8.24 1.94 2.00
油酸含量 Oleic acid content 28.5-72.8 29.4-72.8 13.74 14.44 2.02 2.03
亚油酸含量 Linoleic acid content 12.6-50.7 12.6-45.6 16.42 16.88 2.04 2.06
平均值 Average 29.009±5.964 30.125±5.765 1.631±0.153 1.671±0.154
PP-value 0.123 0.002

Table 5

Comparison of frequency distribution and the ratio of phenotypic retention for thirteen traits in the entire collection and key germplasm"

性状
Trait
级数
Number of classes
Chi-square值
χ2
P
P-value
表型保留比例
RPR
植物学类型Botanical variety 5 14.078 0.007 1.30
株型Plant type 3 0.723 0.697 1.01
开花习性Flowering habit 2 0.122 0.727 1.00
分枝型Branching pattern 2 1.509 0.219 1.03
生育期Growth period 10 7.851 0.549 1.15
株高Plant height 10 3.264 0.917 0.98
百果重100-pod weight 10 3.289 0.952 1.13
百仁重100-seed weight 10 11.810 0.224 2.07
出仁率Shelling percentage 10 9.030 0.435 1.15
粗蛋白含量Protein content 10 6.993 0.638 1.08
粗脂肪含量Oil content 10 11.778 0.226 1.20
油酸含量Oleic acid content 10 2.729 0.974 1.06
亚油酸含量Linoleic acid content 10 1.659 0.996 1.04

Table 6

Traits significantly correlated in both entire collection and key germplasm"

性状
Trait
全部种质
Entire collection
骨干种质
Key germplasm
生育期-百果重Growth period-100-pod weight 0.334** 0.195**
生育期-百仁重Growth period-100-seed weight 0.356** 0.171**
生育期-出仁率Growth period-shelling percentage -0.086** -0.171**
生育期-开花习性Growth period-flowering habit -0.736** -0.558**
生育期-株型Growth period-plant type 0.609** 0.552**
生育期-株高Growth period-plant height -0.219** -0.145
生育期-粗蛋白含量Growth period-protein content -0.267** -0.308**
生育期-粗脂肪含量Growth period-oil content -0.185** -0.030
生育期-油酸含量Growth period-oleic acid content 0.296** 0.128
生育期-亚油酸含量Growth period-linoleic acid content -0.279** -0.077
生育期-植物学类型Growth period-botanical variety 0.630** 0.441**
生育期-分枝型Growth period-branching pattern -0.851** -0.801**
百果重-百仁重100-pod weight-100-seed weight 0.908** 0.873**
百果重-粗脂肪含量100-pod weight-oil content -0.187** -0.010
百果重-株高100-pod weight-plant height -0.162** 0.087
百果重-油酸含量100-pod weight-oleic acid content 0.168** 0.111
百果重-亚油酸含量100-pod weight-linoleic acid content -0.209** -0.154**
百果重-株型100-pod weight-plant type 0.068** -0.056
百果重-开花习性100-pod weight-flowering habit -0.359** -0.249**
百果重-分枝型100-pod weight-branching pattern -0.479** -0.431**
百果重-植物学类型100-pod weight-botanical variety 0.469** 0.362**
百仁重-粗脂肪含量100-pod weight-oil content -0.193** -0.026
百仁重-油酸含量100-pod weight-oleic acid content 0.189** 0.119
百仁重-亚油酸含量100-seed weight-linoleic acid content -0.225** -0.159*
百仁重-株高100-seed weight-plant height -0.139** 0.109
百仁重-株型100-seed weight-plant type 0.071** -0.092
百仁重-开花习性100-seed weight-flowering habit -0.404** -0.286**
百仁重-分枝型100-seed weight-branching pattern -0.515** -0.485**
百仁重-植物学类型100-seed weight-botanical variety 0.533** 0.481**
粗蛋白含量-粗脂肪含量Protein content-oil content -0.423** -0.582**
粗蛋白含量-株型Protein content-plant type -0.186** -0.185**
粗蛋白含量-株高Protein content-plant height 0.091** 0.007
粗蛋白含量-开花习性Protein content-flowering habit 0.172** 0.209**
粗蛋白含量-植物学类型Protein content-botanical variety -0.265** -0.232**
性状
Trait
全部种质
Entire collection
骨干种质
Key germplasm
粗脂肪含量-油酸含量Oil content-oleic acid content 0.064** 0.080
粗脂肪含量-亚油酸含量Oil content-linoleic acid content -0.083** -0.135*
粗脂肪含量-出仁率Oil content-shelling percentage 0.141** 0.048
粗脂肪含量-株高Oil content-plant height 0.110** 0.142
粗脂肪含量-开花习性Oil content-flowering habit 0.133** -0.027
粗脂肪含量-分枝型Oil content-branching pattern 0.321** 0.194
粗脂肪含量-植物学类型Oil content-botanical variety -0.147** -0.063
油酸含量-亚油酸含量Oleic acid content-linoleic acid content -0.932** -0.930**
油酸含量-株型Oleic acid content-plant type 0.428** 0.307**
油酸含量-株高Oleic acid content-plant height -0.082** -0.064
油酸含量-开花习性Oleic acid content-flowering habit -0.509** -0.343**
油酸含量-植物学类型Oleic acid content-botanical variety 0.333** 0.172*
油酸含量-分枝型Oleic acid content-branching pattern -0.789** -0.685**
亚油酸含量-出仁率Linoleic acid content-shelling percentage -0.107** -0.121
亚油酸含量-株型Linoleic acid content-plant type -0.398** -0.282**
亚油酸含量-开花习性Linoleic acid content-flowering habit 0.486** 0.314**
亚油酸含量-分枝型Linoleic acid content-branching pattern 0.781** 0.768**
亚油酸含量-植物学类型Linoleic acid content-botanical variety -0.273** -0.121
株高-植物学类型Plant height-botanical variety -0.322** -0.272**
株高-开花习性Plant height-flowering habit 0.357** 0.287**
株高-株型Plant height-plant type -0.292** -0.350**
株型-开花习性Plant type-flowering habit -0.685** -0.692**
株型-分枝型Plant type-branching pattern -0.600** -0.725**
株型-植物学类型Plant type-botanical variety 0.417** 0.350**
开花习性-分枝型Flowering habit-branching pattern 0.966** 0.965**
开花习性-出仁率Flowering habit-shelling percentage 0.076** 0.014
植物学类型-开花习性Botanical variety-flowering habit -0.719** -0.625**
植物学类型-出仁率Botanical variety-shelling percentage -0.116** -0.079
分枝型-出仁率Branching pattern-shelling percentage 0.220** 0.091
分枝型-植物学类型Branching pattern-botanical variety -0.820** -0.660**

Fig. 1

Principal component plots for the entire collection and key germplasm at 9.4% sampling proportion A: scatter diagram for entire collection; B: scatter diagram for the key germplasm."

Fig. 2

Histograms for 13 related traits of the entire collection and key germplasm"

[1] Kochert G, Halward T, Branch W D, Simpson C E . RFLP variability in peanut ( Arachis hypogaea) cultivars and wild species. Theor Appl Genet, 1991,81:565-570.
[2] 姜慧芳, 任小平, 廖伯寿, 黄家权, 陈本银 . 中国花生核心种质的建立. 武汉植物学研究, 2007,25:289-293.
Jiang H F, Ren X P, Liao B S, Huang J Q, Chen B Y . Establishment of peanut core collection in China. J Wuhan Bot Res, 2007,25:289-293 (in Chinese with English abstract).
[3] 沈一, 鄂志国, 刘永惠, 陈志德 . 中国花生品种及其系谱数据库的构建. 中国油料作物学报, 2015,37:571-575.
Shen Y, E Z G, Liu Y H, Chen Z D . Database construction of Chinese peanut varieties and their genealogy. Chin J Oil Crop Sci, 2015,37:571-575 (in Chinese with English abstract).
[4] 姜慧芳, 段乃雄 . 花生种质资源在育种中的利用. 中国种业, 1998, ( 2):24-25.
Jiang H F, Duan N X . The application of germplasm resources in peanut breeding. China Seed Ind, 1998, ( 2):24-25 (in Chinese with English abstract).
[5] Frankel O H, Brown A H D . Plant genetic resources today: a critical appraisal. In: Holden J H W, Williams J T, eds. Crop Genetic Resources: Conservation and Evaluation. London: George Allen and Unwin, 1984. pp 249-257.
[6] 贾继增, 高丽锋, 赵光耀, 周文斌, 张卫健 . 作物基因组学与作物科学革命. 中国农业科学, 2015,48:3316-3332.
Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J . Crop genomics and crop science revolutions. Sci Agric Sin, 2015,48:3316-3332 (in Chinese with English abstract).
[7] Holbrook C C, Anderson W F, Pittman R N . Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci, 1993,33:859-861.
[8] Holbrook C C, Dong W B . Development and evaluation of a mini core collection for the U.S. peanut germplasm collection. Crop Sci, 2005,45:1540-1544.
[9] Upadhyaya H D, Bramel P J, Ortiz R, Singh S . Developing a mini core of peanut for utilization of genetic resources. Crop Sci, 2002,42:2150-2156.
[10] Upadhyaya H D, Ortiz R, Bramel P J, Sube S . Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resour Crop Evol, 2003,50:139-148.
[11] Chamberlin K D C, Hassan A M, Mark E P . Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to Sclerotinia minor Jagger. Euphytica, 2010,172:109-115.
[12] Mukri G, Hajisaheb L, Nadaf R S B, Gowda M V C, Upadhyaya H D, Sujay V . Phenotypic and molecular dissection of ICRISAT mini core collection of peanut ( Arachis hypogaea L.) for high oleic acid. Plant Breed, 2012,131:418-422.
[13] Upadhyaya H D, Dwivedi S L, Vadez V, Hamidou F, Singh S, Varshney R K, Liao B . Multiple resistant and nutritionally dense germplasm identified from mini core collection in peanut. Crop Sci, 2013,54:679-693.
[14] Sudini H, Upadhyaya H, Reddy S V, Mangala U N, Kumar K V . Resistance to late leaf spot and rust diseases in ICRISAT’s mini core collection of peanut ( Arachis hypogaea L.). Aust Plant Pathol, 2015,44:557-566.
[15] Hovav R, Badani H, Ginzberg I, Hovav R, Badani H, Ginzberg I, Chedvat I, Brand Y, Galili S . Evaluation of a peanut collection for shell-colour traits in two diverse soil types. Plant Breed, 2012,131:148-154.
[16] 黄莉, 任小平, 张晓杰, 陈玉宁, 姜慧芳 . ICRISAT花生微核心种质农艺性状和黄曲霉抗性关联分析. 作物学报, 2012,38:935-946.
Huang L, Ren X P, Zhang X J, Chen Y N, Jiang H F . Association analysis of agronomic traits and resistance to Aspergillus flavus in the ICRISAT peanut mini-core collection . Acta Agron Sin, 2012,38:935-946 (in Chinese with English abstract).
[17] 任小平, 廖伯寿, 张晓杰, 雷永, 黄家权, 晏立英, 陈玉中, 姜慧芳 . 中国花生核心种质中高油酸材料的分布和遗传多样性. 植物遗传资源学报, 2011,12:513-518.
Ren X P, Liao B S, Zhang X J, Lei Y, Huang J Q, Yan L Y, Chen Y Z, Jiang H F . Distributing and genetic diversity of high oleic acid germplasm in peanut ( Arachis hypogaea L.) core collection of China . J Plant Genet Resour, 2011,12:513-518 (in Chinese with English abstract).
[18] 刘娟, 廖康, 赵世荣, 曹倩, 孙琪, 刘欢 . 利用ISSR分子标记构建新疆野杏核心种质资源. 中国农业科学, 2015,48:2017-2028.
Liu J, Liao K, Zhao S R, Cao Q, Sun Q, Liu H . The core collection construction of Xinjiang wild apricot based on ISSR molecular markers. Sci Agric Sin, 2015,48:2017-2028 (in Chinese with English abstract).
[19] 张春雨, 陈学森, 张艳敏, 苑兆和, 刘遵春, 王延龄, 林群 . 采用分子标记构建新疆野苹果核心种质的方法. 中国农业科学, 2009,42:597-604.
Zhang C Y, Chen X S, Zhang Y M, Yuan Z H, Liu Z C, Wang Y L, Lin Q . A method for constructing core collection of Malussieversii using molecular markers. Sci Agric Sin, 2009,42:597-604 (in Chinese with English abstract).
[20] 徐益, 张列梅, 郭艳春, 祁建民, 张力岚, 方平平, 张立武 . 黄麻核心种质的遴选. 作物学报, 2019,45:1672-1681.
Xu Y, Zhang L M, Guo Y C, Qi J M, Zhang L L, Fang P P, Zhang L W . Core collection screening of a germplasm population in jute ( Corchorus spp.) . Acta Agron Sin, 2019,45:1672-1681 (in Chinese with English abstract).
[21] 刘遵春, 张春雨, 张艳敏, 张小燕, 吴传金, 王海波, 石俊, 陈学森 . 利用数量性状构建新疆野苹果核心种质的方法. 中国农业科学, 2010,43:358-370.
Liu Z C, Zhang C Y, Zhang Y M, Zhang X Y, Wu C J, Wang H B, Shi J, Chen X S . Study on method of constructing core collection of Malussieversii based on quantitative traits. Sci Agric Sin, 2010,43:358-370 (in Chinese with English abstract).
[22] Zeuli P L S, Qualset C O . Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theor Appl Genet, 1993,87:295-304.
[23] 潘英华, 徐志健, 梁云涛 . 广西普通野生稻群体结构解析与核心种质构建. 植物遗传资源学报, 2018,19:498-509.
Pan Y H, Xu Z J, Liang Y T . Genetic structure and core collection of common wild rice ( Oryza rufipogon Griff.) in Guangxi . J Plant Genet Resour, 2018,19:498-509 (in Chinese with English abstract).
[24] 常利芳, 白建荣, 李锐, 张丛卓, 张效梅, 杨瑞娟 . 基于SSR标记构建甜玉米群体的核心种质. 玉米科学, 2018,26(3):40-49.
Chang L F, Bai J R, Li R, Zhang C Z, Zhang X M, Yang R J . Construction of a core collection of sweet corn populations based on SSR markers. J Maize Sci, 2018,26(3):40-49 (in Chinese with English abstract).
[25] 任丽平, 倪西源, 黄吉祥, 雷伟侠, 曹明富, 赵坚义 . 甘蓝型油菜一个代表性核心种质的遴选. 中国农业科学, 2008,41:3521-3531.
Ren L P, Ni X Y, Huang J X, Lei W X, Cao M F, Zhao J Y . Core collection of a representative germplasm population in Brassica napus . Sci Agric Sin, 2008,41:3521-3531 (in Chinese with English abstract).
[26] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊 . 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017,50:2433-2441.
Liu Y Y, Mei H X, Du Z W, Wu K, Zheng Y Z, Cui X H, Zheng L . Construction of core collection of sesame based on phenotype and molecular markers. Sci Agric Sin, 2017,50:2433-2441 (in Chinese with English abstract).
[27] 刘三才, 曹永生, 郑殿升, 刘春华, 陈梦英 . 普通小麦核心种质抽样方法的比较. 麦类作物学报, 2001,21(2):42-45.
Liu S C, Cao Y S, Zheng D S, Liu C H, Chen M Y . Comparing of strategies for developing core collection from common wheat. J Triticeae Crops, 2001,21(2):42-45 (in Chinese with English abstract).
[28] Brown A H D . Core collections: a practical approach to genetic resources management. Genome, 1989,31:818-824.
[29] Reddy L J, Upadhyaya H D, Gowda C L L, Sube S . Development of core collection in pigeonpea [Cajanus cajan(L.) Millspaugh] using geographic and qualitative morphological descriptors. Genet Resour Crop Evol, 2005,52:1049-1056.
[30] Diwan N, McIntosh M S, Bauchan G R . Methods of developing a core collection of annual Medicago species. Theor Appl Genet, 1995,90:755-761.
[31] 魏兴华, 颜启传, 应存山, 张丽华, 章林平 . 建立浙江地方籼型稻种资源的核心样品的研究. 中国水稻科学, 1999,13(2):81-85.
Wei X H, Yan Q C, Ying C S, Zhang L H, Zhang L P . A core collection of Zhejiang traditional indica rice germplasm . Chin Rice Sci, 1999,13(2):81-85 (in Chinese with English abstract).
[32] Zewdie Y, Tong N, Bosland P . Establishing a core collection of Capsicum, using a cluster analysis with enlightened selection of accessions. Genet Resour Crop Evol, 2004,51:147-151.
[33] 李自超, 张洪亮, 曹永生, 裘宗恩, 魏兴华, 汤圣祥, 余萍, 王象坤 . 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003,29:20-24.
Li Z C, Zhang H L, Cao Y S, Qiu Z E, Wei X H, Tang S X, Yu P, Wang X K . Studies on the sampling strategy for initial core collection of Chinese ingenious rice. Acta Agron Sin, 2003,29:20-24 (in Chinese with English abstract).
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[6] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[7] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[8] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[9] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[10] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[11] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[12] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[13] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[14] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[15] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!