Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (5): 759-771.doi: 10.3724/SP.J.1006.2020.93044

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China

Wei BAI1,Zhan-Xiang SUN1,*(),Li-Zhen ZHANG2,*(),Jia-Ming ZHENG1,Liang-Shan FENG1,Qian CAI1,Wu-Yan XIANG1,Chen FENG1,Zhe ZHANG1   

  1. 1Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
    2College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2019-08-05 Accepted:2019-12-26 Online:2020-05-12 Published:2020-01-16
  • Contact: Zhan-Xiang SUN,Li-Zhen ZHANG E-mail:sunzx67@163.com;zhanglizhen@cau.edu.cn
  • Supported by:
    This study was supported by the China Postdoctoral Science Fund(2017M620103);the Liaoning Revitalization Talents Program(XLYC1807051);the Central Government Guides Local Science and Technology Development Projects(2019040005-JH6/104);the National Key Research and Development Program of China(2016YFD0300204);the Liaoning Natural Science Foundation Project Key Projects(20180540004);the “Liaoning Bai-Qian-Wan Talent” Program(201746);the Liaoning Academy of Agricultural Sciences Discipline Construction Plan(2019DD062010);the Outstanding Talents in Agricultural Scientific Research and Their Team.

Abstract:

Establishing reasonable plough layer construction is regarded as one of important methods for solving some rainfed farmland problems, which is of great significance in the dryland of northern China. The experiment was conducted with four tillage treatment, including furrow loose and ridge compaction plough layer (FLRC), all loose plough layer (AL), all compaction plough layer (AC), up loose and down compaction plough layer (ULDC, CK), at Fuxin National Agricultural Environmental Science Observation Experimental Station, at which the long-term plough layer construction position fixed experiment began in 2009. The data in 2015 and 2016 showed that the FLRC treatment optimized (P < 0.05) the soil three phase rate, which in 0-10 cm soil layer was optimized by AC treatment before spring corn sowing, while in 10-30 cm soil layer was optimized by FLRC and AL treatments. After the spring corn was harvested, the soil three phase’s rate in 20-30 cm soil layer in FLRC and AL treatments was better than that in ULDC and AC treatments. Compared with the ULDC treatment, FLRC treatment increased (P < 0.05) the root weight density by 7.47%-97.09%, the root length density by 6.62%-112.04%, the root surface area density by 9.80%-125.07%, and the root bulk density by 40.11%-151.97% at silking period in spring corn. The FLRC treatment significantly increased the yield of spring maize by 18.19%-34.86% (P < 0.05) due to the significant increase in number of grains and the decrease of baldness, increased the population biomass by 5.18%-11.30% (P < 0.05), and improved the harvest index (P < 0.05). In conclusion, the furrow loose and ridge compaction plough layer is the optimal construction for improving soil three phase rate and root morphology of spring maize, with certain application value in the construction of reasonable plough layer of dry farmland in northern China.

Key words: tillage, layer construction, soil three phase rate, spring maize, root morphology

Fig. 1

Daily rainfall and mean temperature in growth period at experiment station in 2015-2016"

Table 1

Effect of plough layer constructions on maize yield and yield components"

处理
Treatment
成穗数
Ear number
(Ear hm-2)
穗行数
Kernel-row
number per ear
行粒数
Number of
kernels per row
秃尖长
Bare top
length (cm)
百粒重
100-kernel
weight (g)
籽粒产量(14%含水量)
Yield (14% moisture
content) (kg hm-2)
2015
CK 64939.18±7734.35 a 14.13±0.60 b 24.60±1.04 b 0.53±0.11 b 28.88±0.92 a 6436.52±412.46 b
FLRC 57854.14±8309.26 a 15.20±0.33 ab 31.07±1.49 a 0.40±0.11 b 32.40±1.36 a 8630.47±304.33 a
AL 57263.75±5567.11 a 15.20±0.43 ab 29.27±1.87 a 0.77±0.15 ab 30.32±1.50 a 7600.27±756.73 ab
AC 51158.35±3577.10 a 16.00±0.28 a 32.73±1.19 a 1.00±0.22 a 32.32±0.77 a 8601.47±388.18 a
2016
CK 54256.85±11273.36 a 14.20±0.46 a 32.87±2.20 b 0.15±0.08 a 38.33±0.87 a 9140.73±267.83 b
FLRC 54744.88±2891.83 a 15.60±0.35 a 36.80±1.13 ab 0.00±0.00 a 38.05±1.94 a 11865.41±318.71 a
AL 49325.71±1472.34 a 15.87±0.24 a 37.20±0.73 a 0.13±0.08 a 37.21±1.96 a 10803.56±410.85 a
AC 50291.29±3305.79 a 14.53±0.50 a 33.13±1.53 ab 0.20±0.10 a 37.98±0.91 a 9150.67±457.96 b
PP-value
处理 Treatment (T) 0.549 0.004 0.002 0.087 0.500 0.000
年份 Year (Y) 0.225 0.776 0.000 0.000 0.000 0.000
处理×年份 T×Y 0.861 0.051 0.031 0.009 0.480 0.022

Fig. 2

Effect of plough layer constructions on maize biomass and harvest index Bars labelled with different letters are significantly different at P < 0.05. Abbreviations are the same as those described in Table 1. "

Table 2

Effect of plough layer constructions on three-phase ratio of soil in maize seeding"

土层
Soil layer (cm)
处理
Treatment
固相
Solid phase (%)
液相
Liquid phase (%)
气相
Gas phase (%)
GSSI STPSD
2015
0-10 CK 45.41±0.25 b 12.29±0.16 b 42.30±0.16 b 83.14±0.24 b 9.43±0.29 a
FLRC 42.01±0.67 c 12.17±0.73 b 45.82±1.37 a 78.68±2.61 c 9.62±1.19 a
AL 41.64±0.33 c 11.75±0.14 b 46.62±0.21 a 77.30±0.19 c 10.34±0.06 a
AC 50.06±0.25 a 14.52±0.31 a 35.42±0.55 c 91.20±0.66 a 10.58±0.11 a
10-20 CK 50.44±0.25 ab 16.35±0.60 a 33.21±0.69 b 94.23±0.89 a 9.29±0.64 a
FLRC 49.69±0.33 b 17.03±0.56 a 33.29±0.81 b 94.80±0.85 a 7.52±0.46 a
AL 46.42±0.22 c 15.58±0.62 a 38.00±0.83 a 93.95±1.17 a 4.85±1.05 b
AC 51.32±0.44 a 17.17±0.31 a 31.51±0.57 b 95.63±0.40 a 9.89±0.70 a
20-30 CK 52.08±0.87 a 19.51±0.23 a 28.42±0.67 b 98.03±0.09 a 9.39±1.69 a
FLRC 50.82±0.33 ab 19.10±0.82 a 30.08±1.05 ab 97.42±0.79 a 7.60±0.54 ab
AL 49.43±0.22 b 18.66±0.19 a 31.90±0.11 a 97.65±0.82 a 5.08±0.73 b
AC 51.32±0.22 a 20.23±0.57 a 28.45±0.70 b 98.47±0.40 a 7.73±0.39 ab
2016
0-10 CK 46.04±0.58 b 14.33±1.39 b 39.63±1.94 a 87.58±2.92 b 6.63±1.92 a
FLRC 44.28±0.25 c 14.57±0.15 b 41.15±0.13 a 86.60±0.12 b 5.59±0.32 a
AL 43.14±0.45 c 14.26±0.69 b 42.59±0.47 a 84.56±0.96 b 6.10±1.11 a
AC 50.82±0.50 a 17.26±0.50 a 31.92±0.23 b 95.57±0.46 a 8.95±1.24 a
10-20 CK 51.07±0.33 a 18.88±1.22 a 30.05±1.51 b 97.12±1.06 a 8.33±0.47 a
FLRC 47.42±0.33 b 16.63±0.91 a 35.95±1.11 a 97.49±0.39 a 3.96±1.64 b
AL 48.55±0.67 b 18.83±1.11 a 32.62±1.75 ab 96.09±1.34 a 3.04±0.73 b
AC 51.95±0.33 a 18.83±0.41 a 29.22±0.72 b 92.79±1.39 b 9.74±0.36 a
20-30 CK 53.08±0.50 a 21.06±1.37 a 25.85±1.86 a 98.53±0.68 a 10.78±0.31 a
FLRC 52.45±0.22 a 21.22±0.67 a 26.33±0.81 a 99.03±0.26 a 9.41±0.36 a
AL 52.45±0.33 a 21.16±0.27 a 27.39±0.14 a 99.09±0.12 a 7.37±0.82 b
AC 53.46±0.45 a 21.23±0.62 a 25.31±1.07 a 98.85±0.06 a 11.20±0.60 a
PP-value
处理 Treatment (T) 0.000 0.424 0.015 0.060 0.000
年份 Year (Y) 0.145 0.007 0.033 0.043 0.102
处理×年份 T×Y 0.923 0.920 0.922 0.896 0.376

Table 3

Effect of plough layer constructions on three-phase ratio of soil in maize harvest"

土层
Soil layer (cm)
处理
Treatment
固相
Solid phase (%)
液相
Liquid phase (%)
气相
Gas phase (%)
GSSI STPSD
2015
0-10 CK 51.82±0.33 b 11.98±0.50 b 36.20±0.81 a 86.79±1.29 b 14.92±0.20 a
FLRC 50.31±0.55 c 12.75±0.56 ab 36.93±0.98 a 87.80±1.37 ab 12.62±0.53 b
AL 51.07±0.33 bc 14.40±0.60 a 34.53±0.91 ab 91.39±1.14 a 11.93±0.23 b
AC 53.46±0.33 a 13.52±0.38 ab 33.02±0.18 b 90.57±0.67 ab 15.56±0.68 a
10-20 CK 55.72±0.67 a 16.33±0.76 a 27.95±1.42 a 94.74±0.68 a 16.91±0.59 a
FLRC 54.34±0.44 a 15.10±0.47 a 30.56±0.81 a 93.32±0.75 a 15.65±0.47 a
AL 55.47±0.22 a 16.96±0.74 a 27.56±0.59 a 95.60±0.75 a 16.18±0.64 a
AC 54.97±0.33 a 16.66±0.46 a 28.37±0.79 a 95.37±0.51 a 15.61±0.23 a
20-30 CK 56.98±0.44 a 19.86±0.23 a 23.16±0.34 a 97.14±0.29 a 17.27±0.71 a
FLRC 55.60±0.13 c 18.96±1.64 a 25.44±1.74 a 96.77±1.03 a 15.62±0.50 a
AL 55.72±0.45 bc 20.17±0.28 a 24.11±0.19 a 97.87±0.30 a 15.22±0.80 a
AC 56.86±0.33 ab 19.71±0.48 a 23.43±0.15 a 97.15±0.34 a 17.13±0.66 a
2016
0-10 CK 52.96±0.33 b 18.89±0.15 a 28.15±0.21 a 97.66±0.13 a 11.33±0.61 b
FLRC 51.45±0.55 c 20.02±0.15 a 28.53±0.62 a 98.37±0.16 a 8.03±1.00 c
AL 52.20±0.33 bc 19.49±0.76 a 28.31±1.06 a 97.96±0.52 a 9.82±0.32 bc
AC 54.59±0.33 a 18.45±0.55 a 26.96±0.26 a 97.15±0.46 a 14.13±0.76 a
10-20 CK 56.10±0.25 a 21.77±0.38 a 22.13±0.57 a 97.98±0.16 a 15.42±0.36 a
FLRC 55.35±0.45 a 23.20±0.58 a 21.45±0.31 a 98.36±0.22 a 13.94±0.81 a
AL 55.72±0.33 a 22.47±0.89 a 21.80±1.03 a 98.07±0.24 a 14.71±0.52 a
AC 56.10±0.33 a 21.22±0.23 a 22.68±0.19 a 97.96±0.21 a 15.53±0.58 a
20-30 CK 57.61±0.25 ab 25.66±0.70 ab 16.73±0.78 a 94.78±0.72 a 17.53±0.19 a
FLRC 56.60±0.22 b 26.59±0.30 a 16.81±0.14 a 95.29±0.12 a 15.97±0.33 b
AL 56.86±0.45 b 25.30±0.74 ab 17.84±1.00 a 95.95±0.81 a 16.32±0.71 b
AC 57.99±0.33 a 23.95±0.65 b 18.06±0.95 a 95.61±0.80 a 18.14±0.50 a
PP-value
处理 Treatment (T) 0.095 0.808 0.893 0.528 0.009
年份 Year (Y) 0.071 0.000 0.000 0.000 0.046
处理×年份 T×Y 0.991 0.429 0.801 0.585 0.670

Fig. 3

Effect of plough layer constructions on maize root weight density Bars labelled with different letters are significantly different at P < 0.05. Abbreviations are the same as those described in Table 1. "

Fig. 4

Effect of plough layer constructions on maize root length density Bars labelled with different letters are significantly different at P < 0.05. Abbreviations are the same as those described in Table 1. "

Fig. 5

Effect of plough layer constructions on maize root surface area density Bars labelled d with different letters are significantly different at P < 0.05. Abbreviations are the same as those described in Table 1. "

Fig. 6

Effect of plough layer constructions on maize root volume density Bars labelled with different letters are significantly different at P < 0.05. Abbreviations are the same as those described in Table 1. "

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2008-2010. pp 204-209.
National Bureau of Statistics of the People’s Republic of China. China Statistics Year Book. Beijing: China Statistics Press, 2008-2010. pp 204-209(in Chinese).
[2] 白伟, 孙占祥, 郑家明, 侯志研, 刘洋, 冯良山, 杨宁 . 辽西地区不同种植模式对春玉米产量形成及其生长发育特性的影响. 作物学报, 2014,40:181-189.
doi: 10.3724/SP.J.1006.2014.00181
Bai W, Sun Z X, Zheng J M, Hou Z Y, Liu Y, Feng L S, Yang N . Effect of different planting patterns on maize growth and yield in western Liaoning province. Acta Agron Sin, 2014,40:181-189 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00181
[3] 白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 刘洋, 蔡倩 . 虚实并存耕层提高春玉米产量和水分利用效率. 农业工程学报, 2014,30(21):81-90.
Bai W, Sun Z X, Zheng J M, Hao W P, Liu Q, Liu Y, Cai Q . Furrow loose and ridge compaction plough layer improve spring maize yield and water use efficiency in dry-land. Trans CSAE, 2014,30(21):81-90 (in Chinese with English abstract).
[4] 王立春, 马虹, 郑金玉 . 东北春玉米耕地合理耕层构造研究. 玉米科学, 2008,16(4):13-17.
Wang L C, Ma H, Zheng J Y . Research on rational plough layer construction of spring maize soil in northeast China. J Maize Sci, 2008,16(4):13-17 (in Chinese with English abstract).
[5] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原 . 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015,41:468-478.
doi: 10.3724/SP.J.1006.2015.00468
Nie L P, Guo L W, Niu H Y, Wei J, Li Z J, Ning T Y . Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agron Sin, 2015,41:468-478 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00468
[6] 郑洪兵, 郑金玉, 罗洋, 李瑞平, 王浩, 李伟堂, 齐华 . 农田不同耕层构造对玉米生长发育及产量的影响. 干旱地区农业研究, 2015,33(5):41-45.
Zheng H B, Zheng J Y, Luo Y, Li R P, Wang H, Li W T, Qi H . Effects of different tillage layer structures on growth and yield of maize in cropland zone in northeast of China. Agric Res Arid Areas, 2015,33(5):41-45 (in Chinese with English abstract).
[7] 韩晓增, 邹文秀, 王凤仙, 王凤菊 . 黑土肥沃耕层构建效应. 应用生态学报, 2009,20:2996-3002.
Han X Z, Zou W X, Wang F X, Wang F J . Construction effect of fertile cultivated layer in black soil. Chin J Appl Ecol, 2009,20:2996-3002 (in Chinese with English abstract).
[8] Bai W, Sun Z X, Zheng J M, Liu Y, Hou Z Y, Feng L S, Zhang Z . The combination of subsoil and the incorporation of corn stover affect physicochemical properties of soil and corn yield in semi-arid China. Toxicol Environ Chem, 2016,98:561-570.
[9] Moitzi G, Amon S, Klik A, Schwen A . Effect of two-axle and three-axle sugarbeet tanker harvester on selected soil-physical properties in dry and wet soil conditions. CIGR J, 2019,21:18-27.
[10] Ren L, Nest T V, Ruysschaert G , D’Hose T, Cornelis W M. Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil Tillage Res, 2019,192:76-86.
doi: 10.1016/j.still.2019.04.026
[11] 白伟, 安景文, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩 . 秸秆还田配施氮肥改善土壤理化性状提高春玉米产量. 农业工程学报, 2017,33(15):168-176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q . Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer. Trans CSAE, 2017,33(15):168-176 (in Chinese with English abstract).
[12] Munkholm L J, Heck R J, Deen B . Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res, 2013,127:85-91.
[13] Sun M, Ren A X, Gao Z Q, Wang P R, Mo F, Xue, L Z, Lei M M . Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res, 2018,218:24-32.
[14] Jakhar P, Rana K S, Dass A, Choudhary A K, Kumar P R A M O D, Meena M C, Choudhary M U K E S H . Tillage and residue retention effect on crop and water productivity of Indian mustard (Brassica juncea) under rainfed conditions. Indian J Agric Sci, 2018,88:47-53.
[15] Kaur R, Arora V K . Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India. Agric Water Manage, 2019,213:724-731.
[16] Salem H M, Valero C, Muñoz M Á, Rodríguez M G, Silva L L . Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 2015,237:60-70.
[17] Weyers S L, Archer D W, Forcella F, Gesch R, Johnson J M . Strip-tillage reduces productivity in organically managed grain and forage cropping systems in the Upper Midwest, USA. Renewable Agric Food Syst, 2018,33:309-321.
doi: 10.1017/S1742170517000084
[18] Glinski J. Soil Physical Conditions and Plant Roots. Boca Raton, London, New York: CRC Press, 2018. pp 24-62.
[19] De Moraes M T, Bengough A G, Debiasi H, Franchini J C, Levien R, Schnepf A, Leitner D . Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant Soil, 2018,428:67-92.
[20] Blanco-Canqui H, Ruis S J . No-tillage and soil physical environment. Geoderma, 2018,326:164-200.
doi: 10.1016/j.geoderma.2018.03.011
[21] Logan T J . Effects Conservation Tillage on Ground Water Quality: Nitrates and Pesticides. Boca Raton, London-New York: CRC Press, 2018. pp 62-75.
[22] Dang Y P, Moody P W, Bell M J, Seymour N P, Dalal R C, Freebairn D M, Walker S R . Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res, 2015,152:115-123.
[23] Li H, Mollier A, Ziadi N, Shi Y, Parent L É, Morel C . The long-term effects of tillage practice and phosphorus fertilization on the distribution and morphology of corn root. Plant Soil, 2017,412:97-114.
[24] He Y B, Lin L R, Chen J Z . Maize root morphology responses to soil penetration resistance related to tillage and drought in a clayey soil. J Agric Sci, 2017,155:1137-1149.
doi: 10.1017/S0021859617000302
[25] Hou R X, Zhu O Y, Han D R, Wilson G V . Effects of field experimental warming on wheat root distribution under conventional tillage and no-tillage systems. Ecol Evol, 2018,8:2418-2427.
doi: 10.1002/ece3.3864 pmid: 29531664
[26] Guan D, Zhang Y, Al-Kaisi M M, Wang Q, Zhang M, Li Z, . Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res, 2015,146:286-295.
[27] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D . Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114(in Chinese).
[28] 李晓龙, 高聚林, 胡树平, 于晓芳, 王志刚, 苏治军, 谢岷 . 不同深耕方式对土壤三相比及玉米根系构型的影响. 干旱地区农业研究, 2015,33(4):1-7.
Li X L, Gao J L, Hu S P, Yu X F, Wang Z G, Su Z J, Xie M . Effects of various cultivation approaches on the three-phase ratio of soil and root system structure of maize. Agric Res Arid Areas, 2015,33(4):1-7 (in Chinese with English abstract).
[29] 冯倩倩, 韩惠芳, 张亚运, 许菁, 曹亚倩, 王少博, 李增嘉 . 耕作方式对麦-玉轮作农田固碳、保水性能及产量的影响. 植物营养与肥料学报, 2018,24:869-879.
Feng Q Q, Han H F, Zhang Y Y, Xu J, Cao Y Q, Wang S B, Li Z J . Effects of tillage methods on soil carbon sequestration and water holding capacity and yield in wheat-maize rotation. J Plant Nutr Fert, 2018,24:869-879 (in Chinese with English abstract).
[30] 刘武仁, 郑金玉, 罗洋, 郑洪兵, 李瑞平, 李伟堂 . 不同耕层构造对玉米生长发育及产量的影响. 吉林农业科学, 2013,38(5):1-3.
Liu W R, Zheng J Y, Luo Y, Zheng H B, Li R P, Li W T . Effects of structures of different tillage layer on growth and yield of maize. J Jilin Agric Sci, 2013,38(5):1-3 (in Chinese with English abstract).
[31] 赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 李潮海, . 深松(耕)方式对砂姜黑土耕层特性,作物产量和水分利用效率的影响. 中国农业科学, 2018,51:2489-2503.
Zhao Y L, Liu W L, Cheng S X, Zhou Y N, Zhou J L, Wang X L, Li C H . Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Sci Agric Sin, 2018,51:2489-2503 (in Chinese with English abstract).
[32] 梁泉, 廖红, 严小龙 . 植物根构型的定量分析. 植物学通报, 2007,24:695-702.
Liang Q, Liao H, Yan X L . Quantitative analysis of plant root architecture. Chin Bull Bot, 2007,24:695-702 (in Chinese with English abstract).
[33] 高飞, 李霞, 任佰朝, 董树亭, 刘鹏, 赵斌, 张吉旺 . 小麦玉米周年生产中耕作方式对夏玉米根系特性和产量的影响. 中国农业科学, 2017,50:2141-2149.
Gao F, Li X, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W . Root characteristics and grain yield of summer maize under different winter wheat-summer maize tillage systems. Sci Agric Sin, 2017,50:2141-2149 (in Chinese with English abstract).
[1] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[2] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[3] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[4] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[5] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[6] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[7] ZHANG Xu-Cheng, MA Yi-Fan, YU Xian-Feng, HOU Hui-Zhi, WANG Hong-Li, FANG Yan-Jie, ZHANG Guo-Ping, LEI Kang-Ning. Effects of tillage depth on soil hydrological characteristics and potato yield on northwest Loess Plateau [J]. Acta Agronomica Sinica, 2021, 47(1): 138-148.
[8] LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland [J]. Acta Agronomica Sinica, 2020, 46(8): 1225-1237.
[9] LI Rui-Jie,TANG Hui-Hui,WANG Qing-Yan,XU Yan-Li,WANG Qi,LU Lin,YAN Peng,DONG Zhi-Qiang,ZHANG Feng-Lu. Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China [J]. Acta Agronomica Sinica, 2020, 46(7): 1063-1075.
[10] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[11] Jun-Hua LIU, Zheng-Feng WU, Pu SHEN, Tian-Yi YU, Yong-Mei ZHENG, Xue-Wu SUN, Lin LI, Dian-Xu CHEN, Cai-Bin WANG, Shu-Bo WAN. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut [J]. Acta Agronomica Sinica, 2020, 46(10): 1605-1616.
[12] FENG Jun-Heng,HUANG Jin-Feng,LIU Tian-Qi,CAO Cou-Gui,LI Cheng-Fang. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield [J]. Acta Agronomica Sinica, 2019, 45(8): 1250-1259.
[13] Hai-Ming TANG,Xiao-Ping XIAO,Chao LI,Wen-Guang TANG,Li-Jun GUO,Ke WANG,Kai-Kai CHENG,Xiao-Chen PAN,Gen SUN. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice [J]. Acta Agronomica Sinica, 2019, 45(5): 740-754.
[14] Fang NING,Yuan-Hong ZHANG,Peng-Fei WEN,Rui WANG,Qian WANG,Zhao-Yang DONG,Guang-Can JIA,Jun LI. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions [J]. Acta Agronomica Sinica, 2019, 45(5): 777-791.
[15] Kai SUN,Zhen LIU,Heng-Yu HU,Geng LI,Wen-Tao LIU,Liu YANG,Tang-Yuan NING,Yan-Ling WANG. Effect of organic fertilizer and rotational tillage practices on soil carbon and nitrogen and maize yield in wheat-maize cropping system [J]. Acta Agronomica Sinica, 2019, 45(3): 401-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!