Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (9): 1448-1455.doi: 10.3724/SP.J.1006.2020.04020
• RESEARCH NOTES • Previous Articles Next Articles
FU Hong-Yu1(), CUI Guo-Xian1,2,*(), LI Xu-Meng2,*(), SHE Wei1, CUI Dan-Dan1, ZHAO Liang1, SU Xiao-Hui1, WANG Ji-Long1, CAO Xiao-Lan1, LIU Jie-Yi1, LIU Wan-Hui1, WANG Xin-Hui1
[1] | Becker-Reshef I, Vermote E, Lindeman M, Justice C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens Environ, 2010,114:1312-1323. |
[2] | Michael S, Antje G, Franziska G, Michael P. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens, 2016,8:706. |
[3] | Zhang J, Yang C H, Song H B, Zhang G Z. Evaluation of an airborne remote sensing platform consisting of two consumer-grade cameras for crop identification. Remote Sens, 2016,8:257. |
[4] | 李明, 黄愉淇, 李绪孟, 彭冬星, 谢景鑫. 基于无人机遥感图像的水稻种植信息提取. 农业工程学报, 2018,34(4):108-111. |
Li M, Huang Y Q, Li X M, Peng D X, Xie J X. Extraction of rice planting information based on remote sensing image from UAV. Trans CSAE, 2018,34(4):108-111 (in Chinese with English abstract). | |
[5] | Juliane B, Andreas B, Georg B. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogr Fernerk Geoinf, 2013,6:551-562. |
[6] | 杨琦, 叶豪, 黄凯, 查元源, 史良胜. 利用无人机图像构建作物表面模型估测甘蔗LAI. 农业工程学报, 2017,33(8):112-119. |
Yang Q, Ye H, Huang K, Zha Y Y, Shi L S. Estimation of leaf area index of sugarcane using crop surface model based on UAV image. Trans CSAE, 2017,33(8):112-119 (in Chinese with English abstract). | |
[7] | Malambo L, Popescu S C, Murray S C. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int J Appl Earth Observ Geoinf, 2018,64:31-42. |
[8] | Hu P C, Chapman S, Chapman S C, Wang X M, Andries P, Duan T, David J, Guo Y, Zheng B Y. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: example for sorghum breeding. Eur J Agron, 2018,95:24-32. |
[9] | Juliane B, Andreas B, Simon B, Janis B, Silas E, Georg B. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens, 2014,6:10395-10412. |
[10] | Juliane B, Andreas B, Georg B. Introducing a low-cost mini-UAV for thermal-and multispectral-imaging. Remote Sens Spatial Inf Sci, 2012, XXXIX-B1:345-349. |
[11] | Gašparović M, Seletković A, Alen B, Ivan B. The evaluation of Photogrammetry-based DSM from low-cost UAV by lidar-based DSM. South-East Eur For, 2017,8:117-125. |
[12] | 田明璐, 班松涛, 常庆瑞, 罗丹, 王力, 王烁. 基于低空无人机成像光谱仪图像估算棉花叶面积指数. 农业工程学报, 2016,32(21):102-108. |
Tian M L, Ban S T, Chang Q R, Luo D, Wang L, Wang S. Use of hyperspectral images from UAV-based imaging spectrora diometer to estimate cotton leaf area index. Trans CSAE, 2016,32(21):102-108 (in Chinese with English abstract). | |
[13] | 陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 农业遥感研究应用进展与展望. 遥感学报, 2016,20:748-767. |
Chen Z X, Ren J G, Tang H J, Shi Y, Leng P, Liu J, Wang L M, Wu W B, Yao Y M, Hasituya. Progress and perspectives on agricultural remote sensing research and applications. J Remote Sens, 2016,20:748-767 (in Chinese with English abstract). | |
[14] | 李井会, 朱丽丽, 宋述尧. 数字图像技术在马铃薯氮素营养诊断中的应用. 安徽农业科学, 2012,40:3303-3305. |
Li J H, Zhu L L, Song S Y. Application of digital image technology in diagnosis of potato nitrogen nutrition. J Anhui Agric Sci, 2012,40:3303-3305 (in Chinese with English abstract). | |
[15] | Hunt J E R, Cavigelli M, Daughtry C S T, James E, Charles L. Walthall. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agric, 2005,6:359-378. |
[16] | 李长春, 牛庆林, 杨贵军, 冯海宽, 刘建刚, 王艳杰. 基于无人机数码图像的大豆育种材料叶面积指数估测. 农业机械学报, 2017,48(8):147-158. |
Li C C, Niu Q L, Yang G J, Feng H K, Liu J G, Wang Y J. Estimation of leaf area index of soybean breeding materials based on UAV digital images. Trans CSAM, 2017,48(8):147-158 (in Chinese with English abstract). | |
[17] | Anjin C, Jinha J, Murilo M, Landivar J. Crop height monitoring with digital imagery from unmanned aerial system. Comp Electron Agric, 2017,141:232-237. |
[18] | 牛庆林, 冯海宽, 杨贵军. 基于无人机数码图像的玉米育种材料株高和LAI监测. 农业工程学报, 2018,34(5):73-81. |
Niu Q L, Feng H K, Yang G J. Plant height and LAI monitoring of maize breeding materials based on UAV digital image. Trans CSAE, 2018,34(5):73-81 (in Chinese with English abstract). | |
[19] |
Watanabe K, Guo W, Arai K. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front Plant Sci, 2017,8:421.
doi: 10.3389/fpls.2017.00421 pmid: 28400784 |
[20] |
Juliane B, Kang Y, Helge A, Andreas B, Simon B, Janis B, Martin L, Georg B. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Observ Geoinf, 2015,39:79-87.
doi: 10.1016/j.jag.2015.02.012 |
[21] | Geipel J, Link J, Claupein W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens, 2014,6:10335. |
[22] |
Li W, Niu Z, Chen H Y, Dong L, Wu M Q, Zhao W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol Indicators, 2016,67:637-648.
doi: 10.1016/j.ecolind.2016.03.036 |
[23] | Louhaichi M, Borman M M, Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int, 2001,16:65-70. |
[24] | Woebbecke D, Meyer G, Bargen K V, Mortensen D. Color indices for weed identification under various soil, residue, and lighting conditions. Am Soc Agric Biol Eng, 1995,38:259-269. |
[25] | Shannon C E, Weaver W. The Mathem Atical Theory of Communication. Urbana: University of Illinoispress, 1994. pp 3-14. |
[26] |
Jay S, Rabatel G, Hadoux X, Moura D, Gorretta N. In-field crop row phenotyping from 3D modeling performed using structure from motion. Computers Electron Agric, 2015,110:70-77
doi: 10.1016/j.compag.2014.09.021 |
[27] | 马稚昱, 清水浩, 辜松. 基于机器视觉的菊花生长自动无损监测技术. 农业工程学报, 2010,26(9):213-219. |
Ma Z Y, Qing S H, Gu S. Non-destructive measurement system for plant growth information based on machine vision. Trans CSAE, 2010,26(9):203-209 (in Chinese with English abstract). | |
[28] |
Xu W, Daljit S, Sandeep M, Geoffrey M, Jesse P. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods, 2018,14:53.
doi: 10.1186/s13007-018-0324-5 pmid: 29997682 |
[29] |
Holman F, Riche A B, Michalski A, Castle M, Wooster M, Hawkesford M. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens, 2016,8:1031.
doi: 10.3390/rs8121031 |
[30] |
Tonkin T N, Midgley N G. Ground-control networks for image based surface reconstruction: an investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens, 2016,8:786.
doi: 10.3390/rs8090786 |
[31] |
Munoz J D, Finley A O, Gehl R, Kravchenko S. Nonlinear hierarchical models for predicting cover crop biomass using normalized difference vegetation index. Remote Sens Environ, 2010,114:2833-2840.
doi: 10.1016/j.rse.2010.06.011 |
[32] |
Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications. Comp Electron Agric, 2008,63:282-293.
doi: 10.1016/j.compag.2008.03.009 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[3] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[4] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[5] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[6] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[7] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[8] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
|