Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (3): 556-565.doi: 10.3724/SP.J.1006.2021.04107

• RESEARCH NOTES • Previous Articles     Next Articles

Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage

YAN Cai-Xia1, WANG Juan1, ZHAO Xiao-Bo1, SONG Xiu-Xia2, JIANG Chang-Song3, SUN Quan-Xi1, YUAN Cui-Ling1, ZHANG Hao1, SHAN Shi-Hua1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Agricultural and Rural Bureau of Mudan District, Heze 274000, Shandong, China
    3Haiyang Agricultural Technology Extension Center, Yantai 265100, Shandong, China
  • Received:2020-05-14 Accepted:2020-09-13 Online:2021-03-12 Published:2020-10-10
  • Contact: SHAN Shi-Hua E-mail:shansh1971@163.com
  • Supported by:
    Taishan Scholars Project(ts201712080);Outstanding Talents and Innovation Team in Agricultural Research(13190194);Shandong Agriculture Research System(SDAIT-04-02);Agricultural Science and Technological Innovation Project of Shandong Academy of Agricultural Science(CXGC2016A01)

Abstract:

In order to improve the planting structure of coastal saline-alkali land and enlarge the growing area of peanut in the Yellow River Delta. A total of 22 peanut elite cultivars were tested in saline-alkali area of Dongying in 2016 and 2017. Nine trait indices were separately investigated for five randomly selected individuals during whole growth stage. Variance analysis, correlation analysis and clustering analysis were used to evaluate the saline-alkali tolerance of the materials and to screen saline-alkali tolerant indices. Variance analysis showed that the seedling rates of all cultivars had an obvious decrease compared with those of the control. The growth, development and yield formation were essentially inhibited by saline-alkali stress. There were great differences among tested materials based on nine identification indices. Correlation analysis indicated that RYP and RPY had a significantly positive correlation with RSDW, RMSH and RBL. Additionally, RPY was also obviously related to RSR, RRDW, and RYP. Based on the results of clustering analysis, tested materials were divided into four saline-alkali tolerance grades, in which seven belonged to high tolerant grade I, 11 to tolerant grade II, 3 to susceptible grade III and 1 to highly susceptible grade IV. Huayu 9307, Huayu 9312, Huayu 9313, 6P03, Huayu 9305 and Huayu 6303 could be widely grown in the coastal saline-alkali area as high yield cultivars. In conclusion, the results suggested that RSDW, RMSH, RSR, RYP, RBL, and RRDW could be taken as simple and intuitive indices in the identification of saline-alkali tolerant peanut genotypes.

Key words: peanut, whole growth period, saline-alkali tolerance, high-yield, identification

Fig. 1

Monthly precipitation at the experimental site in Guangrao from 2016 to 2017"

Table 1

Basic physical and chemical properties of tested soils and normal soils of 0-20 cm"

指标
Index
试验田Experimental field 正常地块
Normal field
结荚期Pod-setting stage 饱果期Pod-filling stage
pH 8.9 8.5 6.6
有机质Organic matter (%) 0.97 1.34 1.19
全氮Total N (%) 0.073 0.100 0.081
全钾Total K (%) 1.99 2.07 2.12
全磷Total P (mg kg-1) 682 772 975
有效磷Olsen-P (mg kg-1) 6.9 5.5 55.9
速效钾Available K (mg kg-1) 363.5 540.6 310.1
碱解氮Alkali-hydrolysable N (mg kg-1) 137.3 69.5 107.9
含盐量Salinity (‰) 2.253 2.093 1.093

Table 2

Parents, variety type and 100-pod weight under normal soil conditions of 22 peanut accessions used in this study"

品种(系)
Cultivar (line)
亲本
Parents
百果重
100-pod weight (g)
品种类型
Variety type
6P03 花85×营山大花生Hua 85×Yingshan peanut 270.2 大果Big-pod
6P09 花17×鲁花11 Hua 17×Luhua 11 279.3 大果Big-pod
花育6301 Huayu 6301 花育23×J11 Huayu 23×J11 150.6 小果Small-pod
花育6303 Huayu 6303 赣花1号×鲁花15 Ganhua 1×Luhua 15 260.5 小果Small-pod
花育6304 Huayu 6304 乡香×D16 Xiangxiang×D16 215.8 小果Small-pod
花育6306 Huayu 6306 花育20×J11 Huayu 20×J11 238.5 小果Small-pod
花育6307 Huayu 6307 赣花1号×海花1号Ganhua 1×Haihua 1 210.9 小果Small-pod
花育6312 Huayu 6312 花17×赣花1号Hua 17×Ganhua 1 207.8 小果Small-pod
花育6314 Huayu 6314 鲁花15×J11 Luhua 15×J11 248.0 小果Small-pod
花育71 Huayu 71 乡香×闽花10号Xiangxiang×Minhua 10 290.6 大果Big-pod
花育9301 Huayu 9301 海花1号×XW87 Haihua 1×XW87 298.5 大果Big-pod
花育9302 Huayu 9302 花98×罗江鸡窝Hua 98×Luojiangjiwo 283.2 大果Big-pod
花育9303 Huayu 9303 鲁花15×赣花1号Luhua 15×Ganhua 1 258.3 小果Small-pod
花育9305 Huayu 9305 花98×鲁花11 Hua 98×Luhua 11 282.7 大果Big-pod
花育9306 Huayu 9306 白沙1016×XW 84 Baisha 1016×XW 84 280.3 大果Big-pod
花育9307 Huayu 9307 费县爬蔓×花育22 Feixianpaman×Huayu 22 276.3 大果Big-pod
花育9308 Huayu 9308 花98×粤油551 Hua 98×Yueyou 551 282.6 大果Big-pod
花育9309 Huayu 9309 花育19×乡香Huayu 19×Xiangxiang 279.5 大果Big-pod
花育9310 Huayu 9310 8328-12×五莲大粒 8328-12×Wuliandali 284.3 大果Big-pod
花育9311 Huayu 9311 蓬莱半蔓×NcAc1 8016 Penglaibanman×NcAc1 8016 277.1 大果Big-pod
花育9312 Huayu 9312 花育23×花17 Huayu 23×Hua 17 302.6 大果Big-pod
花育9313 Huayu 9313 花育22×C76-16 Huayu 22×C76-16 278.9 大果Big-pod

Table 3

Effects of saline-alkali stress on the seedling rate in 22 peanut cultivars"

品种(系)
Cultivar (line)
相对成苗率
RSR
品种(系)
Cultivar (line)
相对成苗率
RSR
6P03 0.81 ab 花育9302 Huayu 9302 0.593 bcd
6P09 0.587 bcd 花育9303 Huayu 9303 0.757 abc
花育6301 Huayu 6301 0.703 abcd 花育9305 Huayu 9305 0.823 ab
花育6303 Huayu 6303 0.837 ab 花育9306 Huayu 9306 0.81 ab
花育6304 Huayu 6304 0.687 abcd 花育9307 Huayu 9307 0.88 a
花育6306 Huayu 6306 0.737 abcd 花育9308 Huayu 9308 0.51 cd
花育6307 Huayu 6307 0.83 ab 花育9309 Huayu 9309 0.743 abc
花育6312 Huayu 6312 0.643 abcd 花育9310 Huayu 9310 0.623 bcd
花育6314 Huayu 6314 0.703 abcd 花育9311 Huayu 9311 0.72 abcd
花育71 Huayu 71 0.59 bcd 花育9312 Huayu 9312 0.777 ab
花育9301 Huayu 9301 0.497 d 花育9313 Huayu 9313 0.747 abc

Table 4

Effects of saline-alkali stress on peanut agronomic traits and yield traits in 22 peanut cultivars"

品种(系)
Cultivar (line)
相对主茎高
RMSH
相对侧枝长
RBL
相对地上部干重
RSDW
相对地下部干重
RRDW
相对单株产量
RYP
相对百果重
100-RPW
相对百仁重
100-RSW
6P03 1.013 defg 1 bcd 0.973 abc 0.663 bcde 0.947 a 0.933 abc 0.937 ab
6P09 0.84 ghij 0.767 fgh 0.83 cdef 0.747 abcd 0.807 abc 0.817 def 0.873 bc
花育6301 Huayu 6301 1.107 bcd 0.923 cde 0.8 cdef 0.897 a 0.833 abc 0.713 gh 0.853 bc
花育6303 Huayu 6303 1.033 cdef 0.96 bcde 1.023 ab 0.523 efgh 0.97 a 0.95 ab 0.983 a
花育6304 Huayu 6304 0.983 defgh 1.08 abc 0.787 def 0.837 ab 0.837 abc 0.783 efg 0.86 bc
花育6306 Huayu 6306 1.117 bcd 1.123 ab 0.737 ef 0.423 fgh 0.797 abc 0.913 abc 0.913 ab
花育6307 Huayu 6307 0.84 ghij 0.863 def 0.77 ef 0.403 gh 0.8 abc 0.653 h 0.757 d
花育6312 Huayu 6312 0.733 ijk 0.77 fgh 0.76 ef 0.643 cde 0.79 abc 0.787 efg 0.86 bc
花育6314 Huayu 6314 1.2 abc 1.107 ab 0.747 ef 0.7 bcde 0.707 abc 0.907 abc 0.917 ab
花育71 Huayu 71 0.927 efgh 0.963 bcde 0.79 def 0.527 efgh 0.763 abc 0.893 abcd 0.913 ab
品种(系)
Cultivar (line)
相对主茎高
RMSH
相对侧枝长
RBL
相对地上部干重
RSDW
相对地下部干重
RRDW
相对单株产量
RYP
相对百果重
100-RPW
相对百仁重
100-RSW
花育9301 Huayu 9301 0.81 hij 0.62 h 0.47 g 0.21 i 0.73 abc 0.897 abc 0.937 ab
花育9302 Huayu 9302 0.897 fghi 0.93 cde 0.67 f 0.743 abcd 0.823 abc 0.867 cd 0.88 bc
花育9303 Huayu 9303 0.637 k 0.697 gh 0.76 ef 0.53 efgh 0.573 c 0.817 def 0.9 abc
花育9305 Huayu 9305 0.993 defg 1.007 bcd 0.957 abcd 0.573 defg 0.86 ab 0.923 abc 0.903 abc
花育9306 Huayu 9306 0.69 jk 0.657 h 0.857 bcdef 0.443 fgh 0.64 bc 0.76 fg 0.817 cd
花育9307 Huayu 9307 1.227 ab 1.073 abc 0.96 abcd 0.933 a 0.85 abc 0.877 bcd 0.87 bc
花育9308 Huayu 9308 0.813 hij 0.833 efg 0.723 f 0.363 hi 0.807 abc 0.913 abc 0.89 abc
花育9309 Huayu 9309 1.093 bcde 1.057 abc 0.777 def 0.61 def 0.733 abc 0.867 cd 0.93 ab
花育9310 Huayu 9310 1.097 bcde 1.087 abc 0.92 abcde 0.803 abc 0.913 ab 0.93 abc 0.923 ab
花育9311 Huayu 9311 1.11 bcd 1.067 abc 0.79 def 0.437 fgh 0.787 abc 0.857 cde 0.933 ab
花育9312 Huayu 9312 1.297 a 1.203 a 0.957 abcd 0.917 a 0.877 ab 0.97 a 0.947 ab
花育9313 Huayu 9313 1.133 abcd 0.97 bcde 1.063 a 0.923 a 0.877 ab 0.907 abc 0.89 abc

Table 5

Yield level per plot and tolerance index of 22 peanut genotypes under saline-alkali stress"

品种(系)
Cultivar (line)
小区产量
PY (kg hm-2)
相对小区产量
RPY
品种(系)
Cultivar (line)
小区产量
PY (kg hm-2)
相对小区产量
RPY
6P03 2487 ab 0.81 a 花育9302 Huayu 9302 2247 ab 0.627 abcd
6P09 2153 ab 0.59 abcd 花育9303 Huayu 9303 1647 b 0.503 cd
花育6301 Huayu 6301 2247 ab 0.783 ab 花育9305 Huayu 9305 2533 ab 0.717 abcd
花育6303 Huayu 6303 2380 ab 0.847 a 花育9306 Huayu 9306 2287 ab 0.66 abcd
花育6304 Huayu 6304 1687 b 0.59 abcd 花育9307 Huayu 9307 2980 a 0.813 a
花育6306 Huayu 6306 2000 ab 0.683 abcd 花育9308 Huayu 9308 1687 b 0.47 d
花育6307 Huayu 6307 1667 b 0.61 abcd 花育9309 Huayu 9309 2247 ab 0.687 abcd
花育6312 Huayu 6312 1800 b 0.657 abcd 花育9310 Huayu 9310 2267 ab 0.667 abcd
花育6314 Huayu 6314 2000 ab 0.713 abcd 花育9311 Huayu 9311 2180 ab 0.713 abcd
花育71 Huayu 71 2133 ab 0.583 abcd 花育9312 Huayu 9312 2713 ab 0.78 abc
花育9301 Huayu 9301 1780 b 0.523 bcd 花育9313 Huayu 9313 2600 ab 0.83 a

Table 6

Correlative analysis between yield index and other tolerance indexes under saline-alkali stress"

生育时期
Growth stage
农艺性状指标
Tolerance index
相对单株产量
RYP
相对小区产量
RPY
苗期Seedling stage RSR 0.171 0.673**
结荚期Pod-setting stage RMSH 0.451* 0.702**
RBL 0.512* 0.550**
RRDW 0.576** 0.743**
RSDW 0.412 0.538*
饱果期Pod-filling stage RYP 1.000 0.594**
100-RPW 0.393 0.271
100-RSW 0.302 0.265

Fig. 2

Cluster analysis of tested peanut genotypes based on nine tolerance indexes in whole growth stage I, II, III, and IV represent different saline-alkali tolerance grade, respectively."

[1] 欧阳竹, 王竑晟, 来剑斌, 王春晶, 刘振, 孙志刚, 侯瑞星. 黄河三角洲农业高质量发展新模式. 中国科学院院刊, 2020,35(2):145-153.
Ou-Yang Z, Wang H S, Lai J B, Wang C J, Liu Z, Sun Z G, Hou R X. New approach of high-quality agricultural development in the Yellow River Delta. Bull Chin Acad Sci, 2020,35(2):145-153 (in Chinese with English abstract).
[2] 贾继增, 高丽锋, 赵光耀, 周文彬, 张卫建. 作物基因组学与作物科学革命. 中国农业科学, 2015,48:3316-3332.
Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J. Crop genomics and crop science revolutions. Sci Agric Sin, 2015,48:3316-3332 (in Chinese with English abstract).
[3] 刘永惠, 沈一, 陈志德, 王州飞, 颜伟. 不同花生品种(系)萌发期耐盐性的鉴定与评价. 中国油料作物学报, 2012,34:168-173.
Liu Y H, Shen Y, Chen Z D, Wang Z F, Yan W. Identification of salt tolerance in peanut varieties/lines at the germination stage. Chin J Oil Crop Sci, 2012,34:168-173 (in Chinese with English abstract).
[4] 慈敦伟, 戴良香, 宋文武, 张智猛. 花生萌发至苗期耐盐胁迫的基因型差异. 植物生态学报, 2013,37:1018-1027.
Ci D W, Dai L X, Song W W, Zhang Z M. Genotypic differences in salt tolerance from germination to seedling stage in peanut. Chin J Plant Ecol, 2013,37:1018-1027 (in Chinese with English abstract).
[5] 郭峰, 万书波, 李新国, 徐平丽, 孟静静. NaCl胁迫对花生种子萌发的影响. 干旱地区农业研究, 2010,28(3):177-181.
Guo F, Wan S B, Li X G, Xu P L, Meng J J. Effect of NaCl stress on seed germination in peanut. Agric Res Arid Area, 2010,28(3):177-181 (in Chinese with English abstract).
[6] 沈一, 刘永惠, 陈志德, 颜伟, 栾玉柱. 花生幼苗期耐盐品种的筛选与评价. 花生学报, 2012,41(1):10-15.
Shen Y, Liu Y H, Chen Z D, Yan W, Luan Y Z. Selection and evaluation of peanut varieties based on seedling salt tolerance. J Peanut Sci, 2012,41(1):10-15 (in Chinese with English abstract).
[7] 吴兰荣, 陈静, 许婷婷, 苗华荣, 胡文广, 禹山林. 花生全生育期耐盐鉴定研究. 花生学报, 2005,34(1):20-24.
Wu L R, Chen J, Xu T T, Miao H R, Hu W G, Yu S L. Identification of salt tolerance in peanut growth duration. J Peanut Sci, 2005,34(1):20-24(in Chinese with English abstract).
[8] Singh A L, Hariprassana K, Solanity R M. Screening and selection of groundnut genotypes for tolerance of soil salinity. Aust J Crop Sci, 2008,1:69-77.
[9] Singh A L, Hariprasanna K, Chaudhari V, Gor H K, Chikani B M. Identification of groundnut cultivars tolerant of soil salinity. J Plant Nutr, 2010,33:1761-1776.
[10] Hammad A R, Shaban K A, Tantawy M F. Studies on salinity tolerance of two peanut cultivars in relation to growth, leaf water content, some chemical aspects and yield. J Appl Sci Res, 2010: 1517-1526.
[11] 胡晓辉, 孙令强, 苗华荣, 石运庆, 陈静. 不同盐浓度对花生品种耐盐性鉴定指标的影响. 山东农业科学, 2011, (11):35-37.
Hu X H, Sun L Q, Miao H R, Shi Y Q, Chen J. Effects of different NaCl concentrations on indicators for evaluating salt tolerance of peanut varieties. Shandong Agric Sci, 2011, (11):35-37 (in Chinese with English abstract).
[12] 符方平. 花生对盐胁迫的适应性及其耐盐性评价. 湖南农业大学硕士学位论文, 湖南长沙, 2013. pp 35-37.
Fu F P. Adaption to Salt Stress and Salt Tolerance Evaluation. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013. pp 35-37 (in Chinese with English abstract).
[13] 张智猛, 慈敦伟, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生品种耐盐性指标筛选与综合评价. 应用生态学报, 2013,24:3487-3494.
Zhang Z M, Ci D W, Ding H, Song W W, Fu F P, Kang T, Dai L X. Indices selection and comprehensive evaluation of salinity tolerance for peanut varieties. Chin J Appl Ecol, 2013,24:3487-3494 (in Chinese with English abstract).
[14] 刘倩, 高娅妮, 柳旭, 周文楠, 王佺珍. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响. 生态学报, 2018,38:6143-6155.
Liu Q, Gao Y N, Liu X, Zhou W N, Wang Q Z. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress. Acta Ecol Sin, 2018,38:6143-6155 (in Chinese with English abstract).
[15] 马宏秀, 王开勇, 张开祥, 孟春梅, 安梦洁. 棉粕对盐碱胁迫下棉花生理及生长补偿效应. 植物学报, 2019,54:208-216.
Ma H X, Wang K Y, Zhang K X, Meng C M, An M J. Effect of cotton seed meal on cotton physiology and growth compensation under salinity-alkalinity stress. Chin Bull Bot, 2019,54:208-216 (in Chinese with English abstract).
[16] 宝力格, 陆平, 史梦莎, 许月, 刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定. 作物学报, 2020,46:734-744.
Bao L G, Lu P, Shi M S, Xu Y, Liu M X. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages. Acta Agron Sin, 46:734-744 (in Chinese with English abstract).
[17] 刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020,46:1-8.
Liu X X, Chang R Z, Guan R X, Qiu L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020,46:1-8 (in Chinese with English abstract).
[18] 万书波, 王才斌, 吴正锋, 郑永美, 陈殿绪, 郑亚萍, 冯昊, 刘苹, 郭峰, 赵海军, 单世华, 孙学武. 花生栽培观察记载技术规范. NY/T 2408-2013.
Wan S B, Wang C B, Wu Z F, Zheng Y M, Chen D X, Zheng Y P, Feng H, Liu P, Guo F, Zhao H J, Shan S H, Sun X W. Observation and record technical specification of peanut in cultivation. NY/T 2408-2013 (in Chinese).
[19] 董合忠. 滨海盐碱地棉花成苗的原理与技术. 应用生态学报, 2012,23:566-572.
Dong H Z. Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. Chin J Appl Ecol, 2012,23:566-572 (in Chinese with English abstract).
[20] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014,47:1290-1300.
Dai H F, Wu H, Amanguli M M T A L, Wang L H, Maimaiti A P Z, Zhang J S. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Sci Agric Sin, 2014,47:1290-1300 (in Chinese with English abstract).
[21] 严青青, 张巨松, 徐海江, 李星星, 王燕提. 盐碱胁迫对海岛棉幼苗生物量分配和根系形态的影响. 生态学报, 2019,39:7632-7640.
Yan Q Q, Zhang J S, Xu H J, Li X X, Wang Y T. Effects of saline-alkali stress on biomass allocation and root morphology of sea island cotton seedlings. Acta Ecol Sin, 2019,39:7632-7640 (in Chinese with English abstract).
[22] 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015,35:805-814.
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015,35:805-814 (in Chinese with English abstract).
[23] 朱广龙, 宋成钰, 于林林, 陈许兵, 智文芳, 刘家玮, 焦秀荣, 周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报, 2018,44:1713-1724.
Zhu G L, Song C Y, Yu L L, Chen X B, Zhi W F, Liu J W, Jiao X R, Zhou G S. Alleviation effects of exogenous growth regulators on seed germination of sweet sorghum under salt stress and its physiological basis. Acta Agron Sin, 2018,44:1713-1724 (in Chinese with English abstract).
[24] 张玉娟, 游均, 刘爱丽, 黎冬华, 于景印, 王燕燕, 周瑢, 宫慧慧, 张秀荣. 芝麻发芽期耐盐性鉴定方法研究及耐盐候选基因的挖掘. 中国农业科学, 2018,51:2235-2247.
Zhang Y J, You J, Liu A L, Li D H, Yu J Y, Wang Y Y, Zhou R, Gong H H, Zhang X R. Screening method for salt tolerance in Sesame (Sesamum indicum L.) and identification of candidate salt-tolerant genes. Sci Agric Sin, 2018,51:2235-2247 (in Chinese with English abstract).
[25] 管博, 周道玮, 田雨, 杨季云, 肖模昕. 盐碱及变温条件对花苜蓿种子发芽的影响. 中国草地学报, 2010,32(1):58-63.
Guan B, Zhou D W, Tian Y, Yang J Y, Xiao M X. Effect of salt-alkali and changing temperature on seed germination of Melissilus ruthenicus. Chin J Grassland, 2010,32(1):58-63 (in Chinese with English abstract).
[26] 孙现军, 姜奇彦, 胡正, 张慧媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选. 作物学报, 2019,45:1656-1663.
Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period. 2019,45:1656-1663 (in Chinese with English abstract).
[27] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 298-300.
Wan S B. Peanut Cultivation in China, Shanghai. Shanghai Scientific and Technical Publisher, 2003. pp 298-300(in Chinese).
[28] 梁银培, 孙健, 索艺宁, 刘化龙, 王敬国, 郑洪亮, 孙晓雪, 邹德堂. 水稻耐盐性和耐碱性相关性状的QTL定位及环境互作分析. 中国农业科学, 2017,50:1747-1762.
Liang Y P, Sun J, Suo Y N, Liu H L, Wang J G, Zheng H L, Sun X X, Zou D T. QTL mapping and QTL × environment interaction analysis of salt and alkali tolerance-related traits in rice (Oryza sativa L.). Sci Agric Sin, 2017,50:1747-1762 (in Chinese with English abstract).
[29] 谭军利, 康跃虎, 窦超银. 干旱区盐碱地覆膜滴灌不同年限对糯玉米生长和产量的影响. 中国农业科学, 2013,46:4957-4967.
Tan J L, Kang Y H, Dou C Y. Effects of different irrigation and cropping years on waxy corn growth and yield using drip irrigation with plastic-film mulching on saline-sodic soils in arid area. Sci Agric Sin, 2013,46:4957-4967 (in Chinese with English abstract).
[30] 秦都林, 王双磊, 刘艳慧, 聂军军, 赵娜, 毛丽丽, 宋宪亮, 孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响. 作物学报, 2017,43:1030-1042.
Qin D L, Wang S L, Liu Y H, Nie J J, Zhao N, Mao L L, Song X L, Sun X Z. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil. Acta Agron Sin, 2017,43:1030-1042 (in Chinese with English abstract).
[31] Sun J, Zou D T, Luan F S, Zhao H W, Wang J G, Liu H L, Liu Z L. Dynamic QTL analysis of the Na+ content, K+ content, and Na+/K+ ratio in rice roots during the field growth under salt stress. Biol Planta, 2014,58:689-696.
[32] 罗佳, 候银莹, 程军回, 王宁宁, 陈波浪. 低磷胁迫下不同磷效率基因型棉花的根系形态特征. 中国农业科学, 2016,49:2280-2289.
Luo J, Hou Y Y, Cheng J H, Wang N N, Chen B L. Root morphological characteristics of cotton genotypes with different phosphorus efficiency under phosphorus stress. Sci Agric Sin, 2016,49:2280-2289 (in Chinese with English abstract).
[33] 辛承松, 董合忠, 罗振, 唐薇, 张冬梅, 李维江, 孔祥强. 黄河三角洲盐渍土棉花施用氮、磷、钾肥的效应研究. 作物学报, 2010,36:1698-1706.
Xin C S, Dong H Z, Luo Z, Tang W, Zhang D M, Li W J, Kong X Q. Effects of N, P, and K fertilizer application on cotton grown in saline soil in Yellow River Delta. Acta Agron Sin, 2010,36:1698-1706 (in Chinese with English abstract).
[34] Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell. Plant Physiol, 1998,116:447-453.
doi: 10.1104/pp.116.2.447 pmid: 9490752
[35] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002,216:23-37.
[36] 郑亚萍, 信彩云, 王才斌, 孙秀山, 杨伟强, 万书波, 郑永美, 冯昊, 陈殿绪, 孙学武, 吴正锋. 磷肥对花生根系形态、生理特性及产量的影响. 植物生态学报, 2013,37:777-785.
Zheng Y P, Xin C Y, Wang C B, Sun X S, Yang W Q, Wan S B, Zheng Y M, Feng H, Chen D X, Sun X W, Wu Z F. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea L.). Chin J Plant Ecol, 2013,37:777-785 (in Chinese with English abstract).
[37] 董晓霞, 魏建林, 杨果, 李彦, 田叶, 管力生, 崔荣宗. 春花生养分限制因子与缺肥时花生体内氮磷钾的分配研究. 中国农学通报, 2008,24(4):277-281.
Dong X X, Wei J L, Yang G, Li Y, Tian Y, Guan L S, Cui R Z. Studies on limiting nutrient elements of spring peanut and distribution of nitrogen, phosphorus and potassium in different parts when lack of nutrients. Chin Agric Sci Bull, 2008,24(4):277-281 (in Chinese with English abstract).
[38] 王传堂, 王秀贞, 吴琪, 唐月异, 孙全喜, 王志伟. 花生新品种(系)东营盐碱地种植丰产性初步评价. 山东农业科学, 2016,48(10):69-73.
Wang C T, Wang X Z, Wu Q, Tang Y Y, Sun Q X, Wang Z W. Preliminary evaluation on yielding ability of new peanut cultivars (lines) planted in saline and alkaline lands in Dongying. Shandong Agric Sci, 2016,48(10):69-73 (in Chinese with English abstract).
[39] Azad M A K, Alam M S, Hamid M A. Modification of salt tolerance level in groundnut (Arachis hypogaea L.) through induced mutation. Legume Res, 2013,36:224-233.
[40] Singh A L, Hariprasanna K, Chaudhari V. Differential nutrients absorption an important tool for screening and identification of soil salinity tolerant peanut genotypes. Indian J Plant Physiol, 2016,21:83-92.
[41] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳·肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012,45:1703-1713.
Wu H, Hou L L, Zhou Y F, Fan Z C, Shi J Y, Aliyan R Z, Zhang J S. Analysis of chilling-tolerance and determination of chilling- tolerance evaluation indicators in cotton of different genotypes. Sci Agric Sin, 2012,45:1703-1713 (in Chinese with English abstract).
[42] 刘振兴, 周桂梅, 刘自华, 孟庆祥, 石春雨. 花生产量与农艺性状的灰关联熵分析. 中国油料作物学报, 2006,28:25-28.
Liu Z X, Zhou G M, Liu Z H, Meng Q X, Shi C Y. Grey correlation analysis between peanut yield and agronomic traits. Chin J Oil Crop Sci, 2006,28:25-28 (in Chinese with English abstract).
[43] 金建猛, 谷建中, 刘向阳, 任丽, 范君龙. 花生农艺性状与产量的灰色关联度分析. 种子科技, 2009,27(5):31-33.
Jin J M, Gu J Z, Liu X Y, Ren L, Fan J L. Grey correlation analysis between peanut yield and agronomic traits. Seed Sci Technol, 2009,27(5):31-33 (in Chinese with English abstract).
[44] 李绍伟, 李军华, 任丽, 金建猛, 范君龙, 邓丽. 花生产量与主要农艺性状的灰色关联度分析. 陕西农业科学, 2007, (1):37-38.
Li S W, Li J H, Ren L, Jin J M, Fan J L, Deng L. Grey correlation analysis between peanut yield and main agronomic traits. Shaanxi J Agric Sci, 2007, (1):37-38 (in Chinese with English abstract).
[45] Azad M A K, Alaml M S, Hamid M A, Hossain M A. Low Ca2+/Na+ ratio and efficiency of mobilization of Ca2+ from shoot tissues to kernel determine salinity tolerance in groundnut (Arachis hypogaea L.). Legume Res, 2013,36:396-405.
[46] Mungala A J, Radhakrishnan T, Dobaria J R. In vitro screening of 123 India peanut cultivars for sodium chloride induced salinity tolerance. World J Agric Sci, 2008,4:574-582.
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[10] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[13] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[14] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[15] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!