Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 626-637.doi: 10.3724/SP.J.1006.2021.04145

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and candidate genes screening of earliness traits in Brassica napus L.

LI Shu-Yu(), HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin*(), SONG Lai-Qiang   

  1. Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2020-07-02 Accepted:2020-10-14 Online:2021-04-12 Published:2020-11-11
  • Contact: CHEN Lun-Lin E-mail:lishuyu0104@163.com;lunlinchen@163.com
  • Supported by:
    National Natural Science Foundation of China(31660403);National Key Research and Development Program of China(2017YFD0101703);China Agriculture Research System(CARS-12)

Abstract:

Currently, the research on earliness traits of rapeseed mainly focused on flowering time. Although there was a significant positive correlation between the flowering period and the growth period, it was not completely consistent. There are few reports on the genetic studies and QTL mapping of traits related to rapeseed growth and development after flowering. We carried out phenotypic survey (flowering time, flowering period duration, silique period duration etc.) and QTL mapping with the DH population constructed by ‘Huaqianzao’ and ‘Global’ as material. A total of 30 QTL loci for earliness traits were detected. Among them, 12, 5, 4 and 9 QTL loci were detected in the flowering time, flowering period duration, silique period duration and full growth period, respectively, explaining 5.8%-22.4% phenotypic variance. The 2, 4, and 1 QTL confidence intervals of full growth period were found overlap in part or in whole with flowering time, flowering period duration and silique period duration respectively. The 29 candidate genes were screened, which affected the earliness traits by regulating flowering or silique development in rapeseed growth and development processes. Therefore, in the study of earliness traits, we could consider flowering time and silique development process at the same time, which not only helps to advance the maturity period, but also reduces the adverse effects of early flowering.

Key words: Brassica napus L., earliness traits, QTL mapping, candidate genes

Table 1

Phenotype of earliness related traits under four environments in parents and DH population (d)"

环境
Environment
研究材料
Material
开花期
Flowering time
花期持续时间
Flowering period duration
角果期持续时间
Silique period
duration
全生育期
Full growth period
2016南昌
2016 Nanchang
亲本
Parents
花前早 Huaqianzao 76.0 A 64 A 32.5 A 172.5 A
Global 138.5 B 36.5 B 30.0 A 205.0 B
DH群体
DH population
最大值 Max. 141.0 77.0 36.0 205.0
最小值 Min. 76.0 26.0 22.0 172.5
均值 Mean 118.5 43.5 29.0 191.0
2016韶关
2016 Shaoguan
亲本
Parents
花前早 Huaqianzao 64.5 A 40.5 A 27.5 A 132.5 A
Global 123.5 B 22.5 B 37.5 B 183.5 B
DH群体
DH population
最大值 Max. 131.0 58.5 44.5 185.0
最小值 Min. 58.0 17.0 11.0 124.0
均值 Mean 97.5 34.2 30.2 161.8
2018南昌
2018 Nanchang
亲本
Parents
花前早 Huaqianzao 108.0 A 46.0 A 29.0 A 183.0 A
Global 149.0 B 22 B 30.0 A 201.0 B
DH群体
DH population
最大值 Max. 149.0 46.0 34.0 203.0
最小值 Min. 108.0 17.0 26.0 181.0
均值 Mean 138.1 26.3 30.1 194.5
2018西宁
2018 Xining
亲本
Parents
花前早 Huaqianzao 56.0 A 31.5 A 31.5 A 119.0 A
Global 72.5 B 41.0 B 16.0 B 129.5 B
DH群体
DH population
最大值 Max. 98.0 42.0 31.5 135.5
最小值 Min. 56.0 18.0 9.5 116.5
均值 Mean 72.5 30.1 20.5 123.9

Fig. 1

Phenotype frequency distribution of earliness related traits in DH population 2016 NC, 2016 SG, 2018 NC, and 2018 SG were the code of different environment: 2016 Nanchang, 2016 Shaoguan, 2018 Nanchang and 2018 Xining, respectively."

Table 2

Correlation analysis of four earliness traits in DH population"

开花期
Flowering time
花期持续时间
Flowering period duration
角果期持续时间
Silique period duration
全生育期
Full growth period
开花期
Flowering time
1 -0.880** 0.041 0.926**
花期持续时间
Flowering period duration
1 -0.120 -0.701**
角果期持续时间
Silique period duration
1 0.158*
全生育期
Full growth period
1

Table 3

Statistical information of genetic linkage map"

连锁群
Chr.
连锁群总长度
Length (cM)
标记数
No. of markers
相邻标记间的最大间隔
Max. interval (cM)
Bin数目
No. bins
相邻bin间平均距离
Bin interval (cM)
A01 110.96 48,693 4.72 183 0.61
A02 117.38 44,545 5.95 201 0.59
A03 197.46 65,502 10.52 280 0.71
A04 119.03 43,644 6.56 190 0.63
A05 101.61 55,238 3.39 187 0.55
A06 107.28 43,735 4.37 197 0.55
A07 118.95 40,195 5.75 212 0.56
A08 62.56 38,113 1.50 151 0.42
A09 139.70 55,599 8.99 226 0.62
A10 95.92 44,019 3.39 185 0.52
C01 126.88 39,781 5.48 197 0.65
C02 148.14 83,307 8.73 201 0.74
C03 206.71 85,609 7.96 320 0.65
C04 195.49 37,202 9.81 248 0.79
C05 193.22 22,608 6.68 217 0.90
C06 161.24 27,401 17.33 165 0.98
C07 157.87 31,921 5.80 211 0.75
C08 133.07 36,408 5.50 194 0.69
C09 107.28 31,475 6.72 140 0.77
平均Average 136.88 46,052 6.80 206 0.67
合计Total 2600.73 874,995 3905

Fig. 2

Markers distribution of linkage group in genetic linkage map"

Table 4

Detected QTLs of earliness related traits in different environments"

位点
Locus
性状
Trait
染色体
Chr.
位置
Pos (cM)
LOD值
LOD value
贡献率
R2 (%)
加性效应Additive effect 置信区间Confidence
interval
环境
Environment
qFT.A02-1 FT A02 18.23 5.37 10.6 2.15 16.52-18.52 2018西宁 2018 Xining
qFT.A02-2 FT A02 60.99 3.99 9.1 -1.82 58.14-61.84 2018西宁 2018 Xining
qFT.A06-1 FT A06 95.90 6.73 10.9 2.39 95.61-96.75 2018南昌 2018 Nanchang
qFT.A09-1 FT A09 84.60 5.22 11.8 5.56 84.03-87.84 2016韶关 2016 Shaoguan
qFT.A09-2 FT A09 123.12 4.04 8.8 3.92 121.65-126.32 2016南昌 2016 Nanchang
qFT.C04-1 FT C04 99.26 4.32 9.5 5.04 96.73-99.26 2016韶关 2016 Shaoguan
qFT.C06-1 FT C06 145.13 5.90 9.6 2.29 144.13-149.13 2018南昌 2018 Nanchang
qFT.C07-1 FT C07 81.72 3.76 5.8 1.69 78.76-84.10 2018南昌 2018 Nanchang
qFT.C08-1 FT C08 15.37 7.47 12.4 2.05 10.88-15.37 2018西宁 2018 Xining
qFT.C08-2 FT C08 40.61 6.60 11.1 2.01 34.77-43.49 2018西宁 2018 Xining
FT C08 43.49 4.65 9.0 4.00 42.63-47.70 2016南昌 2016 Nanchang
FT C08 45.80 12.87 22.4 3.71 45.80-45.80 2018南昌 2018 Nanchang
qFT.C08-3 FT C08 52.89 6.54 12.5 6.50 52.04-53.75 2016韶关 2016 Shaoguan
qFT.C08-4 FT C08 104.06 4.57 7.2 2.08 103.27-104.94 2018南昌 2018 Nanchang
qFPD.A02-1 FPD A02 19.09 4.22 7.3 -1.40 19.09-21.67 2018南昌 2018 Nanchang
qFPD.A06-1 FPD A06 95.61 6.14 11.0 -1.54 95.33-97.32 2018南昌 2018 Nanchang
qFPD.A09-1 FPD A09 84.60 4.28 8.9 -2.21 84.03-87.25 2016韶关 2016 Shaoguan
qFPD.C04-1 FPD C04 123.90 3.79 8.4 -2.42 118.86-127.70 2016南昌 2016 Nanchang
qFPD.C08-1 FPD C08 45.80 8.24 15.2 -1.95 44.36-46.70 2018南昌 2018 Nanchang
qSPD.A09-1 SPD A09 91.99 4.59 9.1 -1.19 89.73-92.87 2018西宁 2018 Xining
qSPD.C04-1 SPD C04 64.02 5.07 10.3 -1.30 62.14-64.30 2018西宁 2018 Xining
qSPD.C08-1 SPD C08 17.20 4.77 10.2 1.71 13.88-21.20 2016韶关 2016 Shaoguan
qSPD.C08-2 SPD C08 32.35 5.86 10.1 -1.27 32.35-33.56 2018西宁 2018 Xining
qFGP.A02-1 FGP A02 50.67 5.50 10.7 -5.35 50.10-51.53 2016韶关 2016 Shaoguan
qFGP.A02-2 FGP A02 61.56 5.72 11.9 -1.53 58.71-62.13 2018西宁 2018 Xining
qFGP.A09-1 FGP A09 84.60 4.48 8.8 4.21 83.74-87.25 2016韶关 2016 Shaoguan
qFGP.C06-1 FGP C06 111.50 7.34 12.0 1.34 111.16-119.50 2018南昌 2018 Nanchang
qFGP.C07-1 FGP C07 79.33 6.53 10.0 1.16 78.14-80.33 2018南昌 2018 Nanchang
qFGP.C08-1 FGP C08 5.40 7.56 11.8 1.41 4.54-9.88 2018南昌 2018 Nanchang
qFGP.C08-2 FGP C08 23.27 6.16 12.5 2.15 21.20-27.89 2016南昌 2016 Nanchang
qFGP.C08-3 FGP C08 42.05 3.99 7.2 1.21 40.16-44.65 2018西宁 2018 Xining
FGP C08 44.07 5.42 10.7 4.84 43.49-44.65 2016韶关 2016 Shaoguan
qFGP.C08-4 FGP C08 86.77 5.97 9.2 1.21 86.77-87.36 2018南昌 2018 Nanchang

Table 5

A summary of earliness related traits candidate genes"

[1] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
doi: 10.7505/j.issn.1007-9084.2014.03.020
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract).
[2] 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract).
[4] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2013,13(1):1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2013,13(1):1-8 (in Chinese with English abstract).
[5] 王必庆, 王国槐. 油菜早熟性研究进展. 作物研究, 2009,23:336-338.
Wang B Q, Wang G H. The advance research of the precocious rape. Crop Res, 2009,23:336-338 (in Chinese with English abstract).
[6] 官春云, 靳芙蓉, 董国云, 官梅, 谭太龙. 冬油菜早熟品种生长发育特性研究. 中国工程科学, 2012,14(11):4-12.
Guan C Y, Jin F R, Dong G Y, Guan M, Tan T L. Exploring the growth and development properties of early variety of winter rapeseed. Strategic Study CAE, 2012,14(11):4-12 (in Chinese with English abstract).
[7] Fang J, Zhang F T, Wang H R, Wang W, Zhao F, Lie Z J, Sun C H, Chen F M, Xu F, Chang S Q, Wu L, Bu Q Y, Wang P R, Xie J K, Chen F, Huang X H, Zhan Y J, Zhu X G, Han B, Deng X J, Chu C C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019,116:18717-18722.
doi: 10.1073/pnas.1815030116 pmid: 31451662
[8] Jung C, Muller A E. Flowering time control and applications in plant breeding. Trends Plant Sci, 2009,14:563-573.
doi: 10.1016/j.tplants.2009.07.005 pmid: 19716745
[9] Xu L P, Hu K N, Zhang Z Q, Guan C Y, Chen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed ( Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471
[10] Zhou Q H, Han D P, Mason A S, Zhou C, Zheng W, Li Y Z, Wu C J, Fu D H, Huang Y J. Earliness traits in rapeseed ( Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis. DNA Res, 2018,25:229-244.
doi: 10.1093/dnares/dsx052 pmid: 29236947
[11] Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X X, Edwards D, Meng J L, Prangnel R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E. Genetic and physical mapping of flowering time loci in canola ( Brassica napus L.). Theor Appl Genet, 2013,126:119-132.
doi: 10.1007/s00122-012-1966-8
[12] Wei D, Mei J, Fu Y, Joseph O D, Li J, Qian W. Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed, 2014,34:1797-1804.
doi: 10.1007/s11032-014-0139-7
[13] Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995,90:727-732.
doi: 10.1007/BF00222140 pmid: 24174034
[14] Long Y, Shi J Q, Qiu D, Li R Y, Meng J L. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics, 2007,177:2433-2444.
doi: 10.1534/genetics.107.080705 pmid: 18073439
[15] Mei D S, Wang H Z, Hu Q, Li Y D, Xu Y S, Li Y C. QTL analysis on plant height and flowering time in Brassica napus. Plant Breed, 2009,128:458-465.
doi: 10.1111/pbr.2009.128.issue-5
[16] Wang N, Chen B Y, Xu K, Gao G Z, Li F, Qiao J W, Yan G X, Li J, Li H, Wu X M. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci, 2016,24:338.
[17] 蔡长春, 傅廷栋, 陈宝元, 涂金星. 甘蓝型油菜遗传图谱的构建及开花期的QTL分析. 中国油料作物学报, 2007,29:1-8.
Cai C C, Fu T D, Chen B Y, Tu J X. Construction of a genetic linkagemap and its use for QTL analysis of flowering time in Brassica napus L. Chin J Oil Crop Sci, 2007,29:1-8 (in Chinese with English abstract).
[18] Liu H D, Du D Z, Guo S, Xiao L, Zhao Z, Zhao Z G, Xing X R, Tang G Y, Xu L, Fu Z, Yao Y M, Duncan R W. QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape ( Brassica napus L.). Mol Breed, 2016,36:1-14.
doi: 10.1007/s11032-015-0425-z
[19] Nelson M N, Rajasekaran R, Smith A, Chen S, Beeck C P, Siddique K H, Cowling W A. Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS One, 2014,9:e102611.
doi: 10.1371/journal.pone.0102611 pmid: 25061822
[20] Schiessl S, Iniguez L F, Qian W, Snowdon R J. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics, 2015,16:737.
pmid: 26419915
[21] Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed ( Brassica napus L.): identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
doi: 10.1007/s00122-006-0324-0
[22] Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, Graham J K, Meng J L. The evolution of Brassica napus flowering locus paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol, 2009,9:271.
doi: 10.1186/1471-2148-9-271 pmid: 19939256
[23] Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010,107:10578-10583.
pmid: 20498060
[24] Landry B S, Hubert N Etoh T, Harada J J, Lincoln S E. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552.
doi: 10.1139/g91-084
[25] Shi J Q, Zhan J P, Yang Y H, YE J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed ( Brassica napus L.). Sci Rep, 2015,5:14481.
doi: 10.1038/srep14481 pmid: 26434411
[26] Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052 pmid: 24386142
[27] 俎峰, 赵凯琴, 张云云, 田正书, 刘亚俊, 奚俊玉, 束正齐, 符明联. 甘蓝型油菜的花期与生育期QTL定位. 南方农业学报, 2019,50:500-505.
Zu F, Zhao K Q, Zhang Y Y, Tian Z S, Liu Y J, Xi J Y, Shu Z Q, Fu M L. QTL mapping of flowering time and maturity time in Brassica napus L. J Southern Agric, 2019,50:500-505 (in Chinese with English abstract).
[28] 张尧锋, 余华胜, 曾孝元, 林宝刚, 华水金, 张冬青, 傅鹰. 早熟甘蓝型油菜研究进展及其应用. 植物遗传资源学报, 2019,20:258-266.
Zhang Y F, Yu H S, Zeng X Y, Lin B G, Hua S J, Zhang D Q, Fu Y. Progress and application of early maturity in rapeseed ( Brassica napus L.). J Plant Genet Resour, 2019,20:258-266 (in Chinese with English abstract).
[29] 徐亮, 星晓蓉, 赵志, 姚艳梅. 特早熟春油菜品种青7号的选育. 中国种业, 2011,31:66-67.
Xu L, Xing X R, Zhao Z, Yao Y M. Breeding of special precocious spring rape variety Qingza No. 7. China Seed Ind, 2011,31:66-67 (in Chinese with English abstract).
[30] 柳海东, 赵绪涛, 杜德志. 利用QTL-seq技术定位甘蓝型春油菜早花位点cq DTFC8及其近等基因系构建. 植物生理学报, 2020,56:219-234.
Liu H D, Zhao X T, Du D Z. Mapping of the cqDTFC8 of early flowering site using QTL-seq technique and construction of its near-isogenic lines in Brassica napus L. Plant Physiol J, 2020,56:219-234 (in Chinese with English abstract).
[31] 潘云龙, 柳海东. 甘蓝型春油菜早花位点cqDTFA7a 加密及其近等基因系构建. 分子植物育种, 2019,17:7047-7057.
Pan Y L, Liu H D. Encryption for an early flowering time locus cqDTFA7a and construction of NILs in spring Brassica napus L. Mol Plant Breed, 2019,17:7047-7057 (in Chinese with English abstract).
[32] Boss P K, Bastow R M, Mylne J S, Caroline D. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004,16:18-31.
[33] Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y
[34] Galvao V C, Horrer D, Kuttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 2012,139:4072-4082.
pmid: 22992955
[35] Fornara F, Montaigu A, Coupland G. Snap shot: control of flowering in Arabidopsis. Cell, 2010,141:550-550.
doi: 10.1016/j.cell.2010.04.024 pmid: 20434991
[36] Kobayashi Y, Weigel D. Move on up, It’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007,21:2371-2384.
pmid: 17908925
[37] Levy Y Y, Mesnage S, Mylne J S. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science, 2002,297:243-246.
doi: 10.1126/science.1072147 pmid: 12114624
[38] Meng J. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol, 2012,12:238.
doi: 10.1186/1471-2229-12-238 pmid: 23241244
[39] Wang N, Qian W, Suppanz I, Wei L J, Mao B Z, Long Y, Meng J L, Muller A E, Jung C. Flowering time variation in oilseed rape ( Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot, 2011,8:1-18.
doi: 10.1093/jxb/8.1.1
[40] Zhao J J, Kulkarni V, Liu N, Carpio D P D, Bucher J, Bonnema G. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rape. J Exp Bot, 2010,6:1817-1825.
[41] Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol, 1998,37:763-772.
doi: 10.1023/a:1006064514311 pmid: 9678571
[42] Chen L, Dong F, Cai J, Xin Q, Fang C C, Liu L, Wan L L, Yang G S, Hong D F. A2.833-kb insertion in BnFLC.A2 and its homeologous exchange with Bn-FLC.C2 during breeding selection generated early-flowering rapeseed. Mol Plant, 2018,11:222-225.
doi: 10.1016/j.molp.2017.09.020 pmid: 29024744
[43] Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B. Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol, 2012,12:238.
doi: 10.1186/1471-2229-12-238 pmid: 23241244
[44] Gendall A R, Levy Y Y, Wilson A, Dean C. The Vernalization 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001,107:525-535.
doi: 10.1016/s0092-8674(01)00573-6 pmid: 11719192
[45] Mara C D, Huang T B, Irish V F. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 2010,22:690-702.
doi: 10.1105/tpc.109.065946 pmid: 20305124
[46] 陈苇, 李劲峰, 张国建, 罗延青, 赵凯琴, 周丕才, 瞿观, 俎峰, 董云松, 王敬乔. 特大粒甘蓝型油菜籽粒和角果发育形态特征. 中国油料作物学报, 2013,35:658-664.
doi: 10.7505/j.issn.1007-9084.2013.06.007
Chen W, Li J F, Zhang G J, Luo Y Q, Zhao K Q, Zhou P C, Qu G, Zu F, Dong Y S, Wang J Q. Morphology and silique development of extra-large seed line DL01 of Brassica napus. Chin J Oil Crop Sci, 2013,35:658-664 (in Chinese with English abstract).
[47] Hu Y X, Xie Q, Chua N H. The Arabidopsis auxin-inducible gene argos controls lateral organ size. Plant Cell, 2003,15:1951-1961.
pmid: 12953103
[48] 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017,39:155-161.
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresses. Biotic Resour, 2017,39:155-161 (in Chinese with English abstract).
[1] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[2] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[3] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[4] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[5] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[6] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[7] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[8] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[9] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[10] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[11] WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843.
[12] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[13] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[14] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[15] JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!